×

Morphological instability in freezing colloidal suspensions. (English) Zbl 1131.80008

Summary: We present a linear stability analysis of a planar ice interface during unidirectional solidification of a hard-sphere colloidal suspension. We find that the interface can become unstable due to constitutional supercooling, yielding a new mechanism for pattern formation in colloidal systems. The interfacial stability is shown to depend strongly on the size and concentration of the particles. Increasing the particle radius tends to stabilize the interface, while increasing the concentration has a destabilizing effect. Additional effects that may influence the stability and morphology of such a system are described.

MSC:

80A22 Stefan problems, phase changes, etc.
76T20 Suspensions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Chamberlain, E.J. & Gow, A.J. 1979 Effect of freezing and thawing on the permeability and structure of soils. <i>Eng. Geol.</i>&nbsp;<b>13</b>, 73–92, (doi:10.1016/0013-7952(79)90022-X).
[2] Chandrasekhar, S. 1961 Hydrodynamic and hydromagnetic stability. Oxford, UK: Clarendon Press. · Zbl 0142.44103
[3] Chernov, A.A., Temkin, D.E. & Mel’nikova, A.M. 1976 Theory of the capture of solid inclusions during the growth of crystals from the melt. <i>Sov. Phys. Crystallogr.</i>&nbsp;<b>21</b>, 369–374.
[4] Coriell, S.R. & Sekerka, R.F. 1983 Oscillatory morphological instabilities due to nonequilibrium segregation. <i>J. Cryst. Growth</i>&nbsp;<b>61</b>, 499–508, (doi:10.1016/0022-0248(83)90179-3).
[5] Dash, J.G., Rempel, A.W. & Wettlaufer, J.S. 2006 The physics of premelted ice and its geophysical consequences. <i>Rev. Modern Phys.</i>&nbsp;<b>78</b>, 695–741, (doi:10.1103/RevModPhys.78.695).
[6] Davis, S.H. 2001 Theory of solidification. Cambridge, UK: Cambridge University Press. · Zbl 0991.76002
[7] Fowler, A.C. & Krantz, W.B. 1994 A generalized secondary frost heave model. <i>SIAM J. Appl. Math.</i>&nbsp;<b>54</b>, 1650–1675, (doi:10.1137/S0036139993252554). · Zbl 0817.76088
[8] Gay, G. & Azouni, M.A. 2002 Forced migration of nonsoluble and soluble metallic pollutants ahead of a liquid–solid interface during unidirectional freezing of dilute clayey suspensions. <i>Cryst. Growth Des.</i>&nbsp;<b>2</b>, 135–140, (doi:10.1021/cg0100383).
[9] Jackson, K.A. & Chalmers, B. 1958 Freezing of liquids in porous media with special reference to frost heave in soils. <i>J. Appl. Phys.</i>&nbsp;<b>29</b>, 1178–1181, (doi:10.1063/1.1723397).
[10] Koo, K.-K., Ananth, R. & Gill, W.N. 1991 Tip splitting in dendritic growth of ice crystals. <i>Phys. Rev. A</i>&nbsp;<b>44</b>, 3782–3790, (doi:10.1103/PhysRevA.44.3782).
[11] Kurz, W. & Fisher, D.J. 1998 Fundamentals of solidification. Zurich, Switzerland: Trans Tech Publications Ltd.
[12] Mashl, S.J., Flores, R.A. & Trivedi, R. 1996 Dynamics of solidification in 2
[13] Mazur, P. 1970 Cryobiology: the freezing of biological systems. <i>Science</i>&nbsp;<b>168</b>, 939–949, (doi:10.1126/science.168.3934.939).
[14] Mullins, W.W. & Sekerka, R.F. 1964 Stability of a planar interface during solidification of a dilute binary alloy. <i>J. Appl. Phys.</i>&nbsp;<b>35</b>, 444–451, (doi:10.1063/1.1713333).
[15] Mutou, Y. Watanabe, K. Ishizaki, T. & Mizoguchi, M. 1998 Microscopic observation of ice lensing and frost heave in glass beads. In <i>Proc. 7th Int. Conf. on Permafrost</i>, pp. 783–787.
[16] Northcott, K.A., Snape, I., Scales, P.J. & Stevens, G.W. 2005 Contaminated water treatment in cold regions: an example of coagulation and dewatering modelling in Antarctica. <i>Cold Reg. Sci. Tech.</i>&nbsp;<b>41</b>, 61–72, (doi:10.1016/j.coldregions.2004.10.003).
[17] O’Neill, K. & Miller, R.D. 1985 Exploration of a rigid ice model of frost heave. <i>Water Resour. Res.</i>&nbsp;<b>21</b>, 281–296.
[18] Peppin, S.S.L., Elliott, J.A.W. & Worster, M.G. 2006 Solidification of colloidal suspensions. <i>J. Fluid Mech.</i>&nbsp;<b>554</b>, 147–166, (doi:10.1017/S0022112006009268).
[19] Press, W.H., Teukolsky, S.A., Vetterling, W.T. & Flannery, B.P. 1992 Numerical recipes in C. 2nd edn. Cambridge, UK: Cambridge University Press. · Zbl 0778.65003
[20] Rempel, A.W. & Worster, M.G. 1999 The interaction between a particle and an advancing solidification front. <i>J. Cryst. Growth</i>&nbsp;<b>205</b>, 427–440, (doi:10.1016/S0022-0248(99)00290-0).
[21] Rempel, A.W., Wettlaufer, J.S. & Worster, M.G. 2004 Premelting dynamics in a continuum model of frost heave. <i>J. Fluid Mech.</i>&nbsp;<b>498</b>, 227–244, (doi:10.1017/S0022112003006761). · Zbl 1059.76075
[22] Russel, W.B., Saville, D.A. & Schowalter, W.R. 1989 Colloidal dispersions. Cambridge, UK: Cambridge University Press. · Zbl 0789.76003
[23] Taber, S. 1929 Frost heaving. <i>J. Geol.</i>&nbsp;<b>34</b>, 428–461.
[24] Tiller, W.A., Jackson, K.A., Rutter, J.W. & Chalmers, B. 1953 The redistribution of solute atoms during the solidification of metals. <i>Acta Metallur.</i>&nbsp;<b>1</b>, 428–437, (doi:10.1016/0001-6160(53)90126-6).
[25] Uhlmann, D.R., Chalmers, B. & Jackson, K.A. 1964 Interaction between particles and a solid/liquid interface. <i>J. Appl. Phys.</i>&nbsp;<b>35</b>, 2986–2992, (doi:10.1063/1.1713142).
[26] Watanabe, K. 2002 Relationship between growth rate and supercooling in the formation of ice lenses in a glass powder. <i>J. Cryst. Growth</i>&nbsp;<b>237–239</b>, 2194–2198, (doi:10.1016/S0022-0248(01)02271-0).
[27] Watanabe, K. Muto, Y. & Mizoguchi, M. 2000 A model for the formation of ice lenses in an unconfined, water-saturated porous medium consisting of spherical particles. In <i>Ground Freezing 2000. Frost Action in Soils: Proc. 9th Int. Symp</i>. Louvain-La-Neuve, Belgium, (ed. J.-F. Thimus), pp. 55–60.
[28] Wettlaufer, J.S. 2001 Dynamics of ice surfaces. <i>Interface Sci.</i>&nbsp;<b>9</b>, 117–129, (doi:10.1023/A:1011287217765).
[29] Wettlaufer, J.S. & Worster, M.G. 2006 Premelting dynamics. <i>Annu. Rev. Fluid Mech.</i>&nbsp;<b>38</b>, 427–452, (doi:10.1146/annurev.fluid.37.061903.175758). · Zbl 1101.76061
[30] Zhang, H., Hussain, I., Brust, M., Butler, M.F., Rannard, S.P. & Cooper, A.I. 2005 Aligned two- and three- dimensional structures by directional freezing of polymers and nanoparticles. <i>Nat. Mat.</i>&nbsp;<b>4</b>, 787–793, (doi:10.1038/nmat1487).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.