zbMATH — the first resource for mathematics

Über das Markov-Prinzip. II. (German) Zbl 0381.03045

03F55 Intuitionistic mathematics
Full Text: DOI EuDML
[1] Heyting, A.: Intuitionism. Amsterdam 1971
[2] Howard, W.A., Kreisel, G.: Transfinite induction and bar induction of types zero and one, and the rôle of continuity in intuitionistic analysis. J. symb. logic31, 325–358 (1966). · Zbl 0156.00804
[3] Kleene, S.C.: Formalized recursive functionals and formalized realizability. Memoirs AMS89, (1969). · Zbl 0184.02004
[4] Kreisel, G., Troelstra, A.S.: Formal systems for some branches of intuitionistic analysis. Annals math. logic1, 229–387 (1970). · Zbl 0211.01101
[5] Luckhardt, H.: Extensional Gödel functional interpretation. A consistency proof of classical analysis. Springer Lecture Notes306, (1973). · Zbl 0262.02031
[6] Luckhardt, H.: The real elements in a consistency proof for simple type theory. I. Proof-Theory Symposion Kiel 1974, Springer Lecture Notes500, 233–256 (1975).
[7] Luckhardt, H.: Über das Markov-Prinzip. Archiv für math. Logik und Grundlagenforschung18, 73–80 (1976). · Zbl 0356.02028
[8] Myhill, J.: The invalidity of Markoff’s schema. Zeitschr. f. math. Logik u. Grundl. d. Math.9, 359–360 (1963). · Zbl 0122.01102
[9] Myhill, J.: Notes toward an axiomatization of intuitionistic analysis. Logique et analyse35, 280–297 (1967). · Zbl 0187.26307
[10] Schultz, K.: Modelle modaler Mengenlehren. Zeitschr. f. math. Logik u. Grundl. d. Math.16, 327–339 (1970). · Zbl 0213.01501
[11] Troelstra, A.S.: Principles of intuitionism. Springer Lecture Notes95, (1969). · Zbl 0181.00504
[12] Troelstra, A.S.: An addendum. Annals math. logic3, 437–439 (1971). · Zbl 0231.02041
[13] Troelstra, A.S. (Ed.): Metamathematical investigation of intuitionistic arithmetic and analysis. Springer Lecture Notes344, (1973).
[14] Troelstra, A.S.: Markov’s principle and Markov’s rule for theories of choice sequences. Proof Theory Symposion Kiel 1974, Springer Lecture Notes500, 370–383 (1975). · Zbl 0324.02015
[15] Troelstra, A.S.: Choice sequences and completeness of intuitionistic predicate logic. Report 75-03 Dept. of Math., University of Amsterdam. · Zbl 0439.03009
[16] Troelstra, A.S.: Completeness and validity for intuitionistic predicate logic. Report 76-05 Dept. of Math., University of Amsterdam. · Zbl 0439.03009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.