×

An energy gap for complex Yang-Mills equations. (English) Zbl 1379.58006

Summary: We use the energy gap result of the pure Yang-Mills equation [P. M. N. Feehan, Adv. Math. 312, 547–587 (2017; Zbl 1375.58013)] to prove another energy gap result of complex Yang-Mills equations [M. Gagliardo and K. Uhlenbeck, J. Fixed Point Theory Appl. 11, No. 2, 185–198 (2012; Zbl 1260.53002)], when the Riemannian manifold \(X\) of dimension \(n\geq 2\) satisfies certain conditions.

MSC:

58E15 Variational problems concerning extremal problems in several variables; Yang-Mills functionals
81T13 Yang-Mills and other gauge theories in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Bourguignon, Jean-Pierre and Lawson, H. Blaine, Stability and isolation phenomena for {Y}ang–{M}ills fields, Communications in Mathematical Physics, 79, 2, 189-230, (1981) · Zbl 0475.53060 · doi:10.1007/BF01942061
[2] Bourguignon, Jean-Pierre and Lawson, H. Blaine and Simons, James, Stability and gap phenomena for {Y}ang–{M}ills fields, Proceedings of the National Academy of Sciences of the United States of America, 76, 4, 1550-1553, (1979) · Zbl 0408.53023
[3] Dodziuk, J. and Min-Oo, Maung, An {\(L_2\)}-isolation theorem for {Y}ang–{M}ills fields over complete manifolds, Compositio Mathematica, 47, 2, 165-169, (1982) · Zbl 0518.53039
[4] Donaldson, S. K., Floer homology groups in {Y}ang–{M}ills theory, Cambridge Tracts in Mathematics, 147, viii+236, (2002), Cambridge University Press, Cambridge · Zbl 0998.53057 · doi:10.1017/CBO9780511543098
[5] Donaldson, S. K. and Kronheimer, P. B., The geometry of four-manifolds, Oxford Mathematical Monographs, Oxford Science Publications, x+440, (1990), The Clarendon Press, Oxford University Press, New York · Zbl 0820.57002
[6] Feehan, Paul M. N., Global existence and convergence of smooth solutions to {Y}ang–{M}ills gradient flow over compact four-manifolds
[7] Feehan, Paul M. N., Energy gap for {Y}ang–{M}ills connections, {I}: {F}our-dimensional closed {R}iemannian manifolds, Advances in Mathematics, 296, 55-84, (2016) · Zbl 1456.58014 · doi:10.1016/j.aim.2016.03.034
[8] Feehan, Paul M. N., Energy gap for {Y}ang–{M}ills connections, {II}: {A}rbitrary closed {R}iemannian manifolds, Advances in Mathematics, 312, 547-587, (2017) · Zbl 1375.58013 · doi:10.1016/j.aim.2017.03.023
[9] Gagliardo, Michael and Uhlenbeck, Karen, Geometric aspects of the {K}apustin–{W}itten equations, Journal of Fixed Point Theory and Applications, 11, 2, 185-198, (2012) · Zbl 1260.53002 · doi:10.1007/s11784-012-0082-3
[10] Gerhardt, Claus, An energy gap for {Y}ang–{M}ills connections, Communications in Mathematical Physics, 298, 2, 515-522, (2010) · Zbl 1198.53025 · doi:10.1007/s00220-010-1073-0
[11] Gilbarg, David and Trudinger, Neil S., Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften, 224, xiii+513, (1983), Springer-Verlag, Berlin · Zbl 1042.35002 · doi:10.1007/978-3-642-61798-0
[12] Hitchin, N. J., The self-duality equations on a {R}iemann surface, Proceedings of the London Mathematical Society. Third Series, 55, 1, 59-126, (1987) · Zbl 0634.53045 · doi:10.1112/plms/s3-55.1.59
[13] Huang, T., A proof on energy gap for {Y}ang–{M}ills connection
[14] Min-Oo, Maung, An {\(L_2\)}-isolation theorem for {Y}ang–{M}ills fields, Compositio Mathematica, 47, 2, 153-163, (1982) · Zbl 0519.53042
[15] Sedlacek, Steven, A direct method for minimizing the {Y}ang–{M}ills functional over {\(4\)}-manifolds, Communications in Mathematical Physics, 86, 4, 515-527, (1982) · Zbl 0506.53016 · doi:10.1007/BF01214887
[16] Simpson, Carlos T., Constructing variations of {H}odge structure using {Y}ang–{M}ills theory and applications to uniformization, Journal of the American Mathematical Society, 1, 4, 867-918, (1988) · Zbl 0669.58008 · doi:10.2307/1990994
[17] Taubes, Clifford Henry, Self-dual {Y}ang–{M}ills connections on non-self-dual {\(4\)}-manifolds, Journal of Differential Geometry, 17, 1, 139-170, (1982) · Zbl 0484.53026 · doi:10.4310/jdg/1214436701
[18] Uhlenbeck, Karen K., Removable singularities in {Y}ang–{M}ills fields, Communications in Mathematical Physics, 83, 1, 11-29, (1982) · Zbl 0491.58032 · doi:10.1007/BF01947068
[19] Uhlenbeck, Karen K., Connections with {\(L^p\)} bounds on curvature, Communications in Mathematical Physics, 83, 1, 31-42, (1982) · Zbl 0499.58019 · doi:10.1007/BF01947069
[20] Uhlenbeck, Karen K., The {C}hern classes of {S}obolev connections, Communications in Mathematical Physics, 101, 4, 449-457, (1985) · Zbl 0586.53018 · doi:10.1007/BF01210739
[21] Wehrheim, Katrin, Uhlenbeck compactness, EMS Series of Lectures in Mathematics, viii+212, (2004), European Mathematical Society (EMS), Z\"urich · Zbl 1055.53027 · doi:10.4171/004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.