×

Dynamics of singular complex analytic vector fields with essential singularities. I. (English) Zbl 1368.32020

Summary: We tackle the problem of understanding the geometry and dynamics of singular complex analytic vector fields \(X\) with essential singularities on a Riemann surface \(M\) (compact or not). Two basic techniques are used. (a) In the complex analytic category on \(M\), we exploit the correspondence between singular vector fields \(X\), differential forms \(\omega_X\) (with \(\omega_X(X)\equiv 1\)), orientable quadratic differentials \(\omega_X\otimes\omega_X\), global distinguished parameters \(\Psi_X(z)=\int^z\omega_X\), and the Riemann surfaces \(\mathcal R_X\) of the above parameters. (b) We use the fact that all singular complex analytic vector fields can be expressed as the global pullback via certain maps of the holomorphic vector fields on the Riemann sphere, in particular, via their respective \(\Psi_X\).
We show that under certain analytical conditions on \(\Psi_X\), the germ of a singular complex analytic vector field determines a decomposition in angular sectors; center \(C\), hyperbolic \(H\), elliptic \(E\), parabolic \(P\) sectors but with the addition of suitable copies of a new type of entire angular sector \(\mathcal E\), stemming from \(X(z)=\mathrm e^z\frac{\partial}{\partial z}\). This extends the classical theorems of A. A. Andronov et al. on the decomposition in angular sectors of real analytic vector field germs.
The Poincaré-Hopf index theory for \(\mathfrak{Re}\left(X\right)\) local and global on compact Riemann surfaces, is extended so as to include the case of suitable isolated essential singularities.
The inverse problem: determining which cyclic words \(\mathcal W_X\), comprised of hyperbolic, elliptic, parabolic and entire angular sectors, it is possible to obtain from germs of singular analytic vector fields, is also answered in terms of local analytical invariants.
We also study the problem of when and how a germ of a singular complex analytic vector field having an essential singularity (not necessarily isolated) can be extended to a suitable compact Riemann surface.
Considering the family of entire vector fields \(\mathcal E(d)=\{X(z)=\lambda\mathrm e^{P(z)}\frac{\partial}{\partial z}\}\) on the Riemann sphere, where \(P(z)\) is a polynomial of degree \(d\) and \(\lambda\in\mathbb C^\ast\), we completely characterize the local and global dynamics of this class of vector fields, compute analytic normal forms for \( d=1,2,3\), and show that for \(d\geq 3\) there are an infinite number of topological (phase portrait) classes of \(\mathfrak{Re}(X)\), for \(X\in\mathcal E(d)\). These results are based on the work of R. Nevanlinna, A. Speisser and M. Taniguchi on entire functions \(\Psi_X\).
Finally, on the topological decomposition of real vector fields into canonical regions, we extend the results of L. Markus and H. E. Benzinger to meromorphic on \(\mathbb C\) vector fields \(X\), with an essential singularity at \(\infty\in\widehat{\mathbb C}\), whose \(\Psi_X^{-1}\) have \(d\) logarithmic branch points over \(d\) finite asymptotic values and \(d\) logarithmic branch points over \(\infty\).
For Part II, see [the authors, J. Singul. 24, 1–78 (2022; Zbl 1495.32079)].

MSC:

32S65 Singularities of holomorphic vector fields and foliations
30F99 Riemann surfaces
58K45 Singularities of vector fields, topological aspects
32M25 Complex vector fields, holomorphic foliations, \(\mathbb{C}\)-actions

Citations:

Zbl 1495.32079
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ahlfors, Lars V., Conformal invariants: topics in geometric function theory, ix+157 pp. (1973), McGraw-Hill Book Co., New York-D\"usseldorf-Johannesburg · Zbl 0272.30012
[2] Ahlfors, Lars V., Complex analysis, xi+331 pp. (1978), McGraw-Hill Book Co., New York
[3] Alvarez1 A. Alvarez-Parrilla, Complex analytic vector field visualization without numerical integration, Preprint (2009).
[4] Alvarez-Parrilla, Alvaro; G\'omez-Arciga, Adrian; Riesgo-Tirado, Alberto, Newton vector fields on the plane and on the torus, Complex Var. Elliptic Equ., 54, 5, 449-461 (2009) · Zbl 1166.30001 · doi:10.1080/17476930902755658
[5] Alvarez-Parrilla, Alvaro; Fr\'\i as-Armenta, Mart\'\i n. Eduardo; L\'opez-Gonz\'alez, Elifalet; Yee-Romero, Carlos, On solving systems of autonomous ordinary differential equations by reduction to a variable of an algebra, Int. J. Math. Math. Sci., Art. ID 753916, 21 pp. (2012) · Zbl 1254.34053
[6] Andronov, A. A.; Leontovich, E. A.; Gordon, I. I.; Ma\u \i er, A. G., Qualitative theory of second-order dynamic systems, xxiii+524 pp. (1973), Halsted Press (A division of John Wiley & Sons), New York-Toronto, Ont.; Israel Program for Scientific Translations, Jerusalem-London · Zbl 0282.34022
[7] Arbarello, Enrico; Cornalba, Maurizio; Griffiths, Pillip A., Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 268, xxx+963 pp. (2011), Springer, Heidelberg · Zbl 1235.14002 · doi:10.1007/978-3-540-69392-5
[8] Arnold, L.; Jones, C.; Mischaikow, K.; Raugel, G., Dynamical systems, Lecture Notes in Mathematics 1609, viii+329 pp. (1995), Springer-Verlag, Berlin · Zbl 0822.00008 · doi:10.1007/BFb0095237
[9] Bely\u \i , G. V., Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat., 43, 2, 267-276, 479 (1979) · Zbl 0409.12012
[10] Benzinger, Harold E., Plane autonomous systems with rational vector fields, Trans. Amer. Math. Soc., 326, 2, 465-483 (1991) · Zbl 0727.34004 · doi:10.2307/2001769
[11] Berenstein, Carlos A.; Gay, Roger, Complex variables, Graduate Texts in Mathematics 125, xii+650 pp. (1991), Springer-Verlag, New York · Zbl 0741.30001 · doi:10.1007/978-1-4612-3024-3
[12] Bergweiler, Walter; Eremenko, Alexandre, On the singularities of the inverse to a meromorphic function of finite order, Rev. Mat. Iberoamericana, 11, 2, 355-373 (1995) · Zbl 0830.30016 · doi:10.4171/RMI/176
[13] Branner, Bodil; Dias, Kealey, Classification of complex polynomial vector fields in one complex variable, J. Difference Equ. Appl., 16, 5-6, 463-517 (2010) · Zbl 1203.37080 · doi:10.1080/10236190903251746
[14] Brickman, Louis; Thomas, E. S., Conformal equivalence of analytic flows, J. Differential Equations, 25, 3, 310-324 (1977) · Zbl 0348.34034 · doi:10.1016/0022-0396(77)90047-X
[15] Bowman, Joshua P.; Valdez, Ferr\'an, Wild singularities of flat surfaces, Israel J. Math., 197, 1, 69-97 (2013) · Zbl 1284.30039 · doi:10.1007/s11856-013-0022-y
[16] Buff, Xavier; Tan, Lei, Dynamical convergence and polynomial vector fields, J. Differential Geom., 77, 1, 1-41 (2007) · Zbl 1126.37029
[17] Bustinduy, Alvaro; Giraldo, Luis; Muci\~no-Raymundo, Jes\'us, Jacobian mates for non-singular polynomial maps in \(\mathbb{C}^n\) with one-dimensional fibers, J. Singul., 9, 27-42 (2014) · Zbl 1309.14051
[18] Bustinduy, Alvaro; Giraldo, Luis; Muci\~no-Raymundo, Jes\'us, Vector fields from locally invertible polynomial maps in \(\mathbb{C}^n\), Colloq. Math., 140, 2, 205-220 (2015) · Zbl 1335.14014 · doi:10.4064/cm140-2-4
[19] Douady A. Douady, F. Estrada, P. Sentenac, Champs de vecteurs polynomiaux sur \(\mathbbC \), Preprint 2005.
[20] Duistermaat, J. J.; Kolk, J. A. C., Lie groups, Universitext, viii+344 pp. (2000), Springer-Verlag, Berlin · Zbl 0955.22001 · doi:10.1007/978-3-642-56936-4
[21] Dumortier, Freddy; Llibre, Jaume; Art\'es, Joan C., Qualitative theory of planar differential systems, Universitext, xvi+298 pp. (2006), Springer-Verlag, Berlin · Zbl 1110.34002
[22] Elfving G. Elfving, \`“Uber eine Klasse von Riemannschen Fl\'”achen und ihre Uniformisierung, Acta Soc. Sci. Fennicae, N.S. 2, Nr. 3 (1934), 1-60. · Zbl 0010.36301
[23] Fr\'\i as-Armenta, Mart\'\i n-Eduardo; Muci\~no-Raymundo, Jes\'us, Topological and analytical classification of vector fields with only isochronous centres, J. Difference Equ. Appl., 19, 10, 1694-1728 (2013) · Zbl 1320.37010 · doi:10.1080/10236198.2013.772598
[24] Garijo, Antonio; Gasull, Armengol; Jarque, Xavier, Normal forms for singularities of one dimensional holomorphic vector fields, Electron. J. Differential Equations, No. 122, 7 pp. (2004) · Zbl 1075.34089
[25] Garijo, Antonio; Gasull, Armengol; Jarque, Xavier, Local and global phase portrait of equation \(\dot z=f(z)\), Discrete Contin. Dyn. Syst., 17, 2, 309-329 (2007) · Zbl 1125.34025
[26] Gregor1 J. Gregor, Dynamick\'e syst\'emy s regul\'arn\'pravou stranou I, Pokroky Mat. Fyz. Astron. 3 (1958), 153-160. · Zbl 0081.30802
[27] Gregor2 J. Gregor, Dynamick\'e syst\'emy s regul\'arn\'pravou stranou II, Pokroky Mat. Fyz. Astron. 3 (1958), 266-270. · Zbl 0086.07301
[28] Griffiths, Phillip; Harris, Joseph, Principles of algebraic geometry, xii+813 pp. (1978), Wiley-Interscience [John Wiley &Sons], New York · Zbl 0836.14001
[29] Gro\ss , Wilhelm, \`“Uber die Singularit\'”aten analytischer Funktionen, Monatsh. Math. Phys., 29, 1, 3-47 (1918) · JFM 46.0512.02 · doi:10.1007/BF01700480
[30] Guti\'errez, Carlos, Smoothing continuous flows on two-manifolds and recurrences, Ergodic Theory Dynam. Systems, 6, 1, 17-44 (1986) · Zbl 0606.58042 · doi:10.1017/S0143385700003278
[31] H\'ajek, Otomar, Notes on meromorphic dynamical systems. I, Czechoslovak Math. J., 16 (91), 14-27 (1966) · Zbl 0145.32401
[32] H\'ajek, Otomar, Notes on meromorphic dynamical systems. II, Czechoslovak Math. J., 16 (91), 28-35 (1966) · Zbl 0145.32401
[33] H\'ajek, Otomar, Notes on meromorphic dynamical systems. III, Czechoslovak Math. J., 16 (91), 36-40 (1966) · Zbl 0145.32401
[34] Hockett, Kevin; Ramamurti, Sita, Dynamics near the essential singularity of a class of entire vector fields, Trans. Amer. Math. Soc., 345, 2, 693-703 (1994) · Zbl 0810.34004 · doi:10.2307/2154994
[35] Hua, Xin-Hou; Yang, Chung-Chun, Dynamics of transcendental functions, Asian Mathematics Series 1, xii+241 pp. (1998), Gordon and Breach Science Publishers, Amsterdam · Zbl 0934.30021
[36] Hurwitz A. Hurwitz, Sur les points critiques des fonctions inverses, Comptes Rendus 143 (1906), 877-879; Math. Werke, Bd. 1, S. 655-656. · JFM 37.0417.01
[37] Ilyashenko, Yulij; Yakovenko, Sergei, Lectures on analytic differential equations, Graduate Studies in Mathematics 86, xiv+625 pp. (2008), American Mathematical Society, Providence, RI · Zbl 1186.34001
[38] Iversen F. Iversen, Recherches sur les fonctions inverses des fonctions m\'eromorphes, Th\`ese, Helsingfors, 1914. · JFM 45.0656.05
[39] Jenkins, James A., Univalent functions and conformal mapping, Ergebnisse der Mathematik und ihrer Grenzgebiete. Neue Folge, Heft 18. Reihe: Moderne Funktionentheorie, vi+169 pp. (1958), Springer-Verlag, Berlin-G\"ottingen-Heidelberg · Zbl 0083.29606
[40] Jongen, H. Th.; Jonker, P.; Twilt, F., On the classification of plane graphs representing structurally stable rational Newton flows, J. Combin. Theory Ser. B, 51, 2, 256-270 (1991) · Zbl 0725.05069 · doi:10.1016/0095-8956(91)90041-H
[41] Kobayashi, Shoshichi, Transformation groups in differential geometry, viii+182 pp. (1972), Springer-Verlag, New York-Heidelberg · Zbl 0829.53023
[42] KN S. Kobayashi, K. Nomizu, Foundations of Differential Geometry Vol. 2., John Wiley & Sons, New York, 1969. · Zbl 0175.48504
[43] Klein F. Klein, On Riemann’s Theory of Algebraic Functions and Their Integrals, Dover Publications Inc., New York, 1963. · JFM 14.0358.01
[44] Kontsevich, Maxim; Zorich, Anton, Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., 153, 3, 631-678 (2003) · Zbl 1087.32010 · doi:10.1007/s00222-003-0303-x
[45] Muci\~no-Raymundo, Jes\'us, Complex structures adapted to smooth vector fields, Math. Ann., 322, 2, 229-265 (2002) · Zbl 1047.37032 · doi:10.1007/s002080100206
[46] Lukashevich N. A. Lukashevich, Isochronicity of a center for certain systems of differential equations, Differ. Uravn. 1 (1965), 295-302. · Zbl 0178.43301
[47] Markus, L., Global structure of ordinary differential equations in the plane, Trans. Amer. Math. Soc., 76, 127-148 (1954) · Zbl 0055.08102 · doi:10.2307/1990747
[48] Masur, Howard; Tabachnikov, Serge, Rational billiards and flat structures. Handbook of dynamical systems, Vol.1A, 1015-1089 (2002), North-Holland, Amsterdam · Zbl 1057.37034 · doi:10.1016/S1874-575X(02)80015-7
[49] Muci\~no-Raymundo, Jes\'us, Complex structures adapted to smooth vector fields, Math. Ann., 322, 2, 229-265 (2002) · Zbl 1047.37032 · doi:10.1007/s002080100206
[50] Muci\~no-Raymundo, Jes\'us; Valero-Vald\'es, Carlos, Bifurcations of meromorphic vector fields on the Riemann sphere, Ergodic Theory Dynam. Systems, 15, 6, 1211-1222 (1995) · Zbl 0863.58056 · doi:10.1017/S0143385700009883
[51] Mumford, David, Curves and their Jacobians, vi+104 pp. (1975), The University of Michigan Press, Ann Arbor, Mich. · Zbl 0316.14010
[52] Needham, D. J.; King, A. C., On meromorphic complex differential equations, Dynam. Stability Systems, 9, 2, 99-122 (1994) · Zbl 0813.34005 · doi:10.1080/02681119408806171
[53] Nevanlinna, Rolf, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, viii+373 pp. (1970), Springer-Verlag, New York-Berlin · Zbl 0199.12501
[54] Nevanlinna, Rolf, \`“Uber Riemannsche Fl\'”achen mit endlich vielen Windungspunkten, Acta Math., 58, 1, 295-373 (1932) · JFM 58.0369.01 · doi:10.1007/BF02547780
[55] Neumann, Dean A., Classification of continuous flows on \(2\)-manifolds, Proc. Amer. Math. Soc., 48, 73-81 (1975) · Zbl 0307.34044 · doi:10.2307/2040695
[56] Olver, Frank W. J., Asymptotics and special functions, AKP Classics, xviii+572 pp. (1997), A K Peters, Ltd., Wellesley, MA · Zbl 0982.41018
[57] Peretz, Ronen, Maximal domains for entire functions, J. Anal. Math., 61, 1-28 (1993) · Zbl 0789.30011 · doi:10.1007/BF02788836
[58] Riemann, Bernhard, Collected papers, x+555 pp. (2004), Kendrick Press, Heber City, UT · Zbl 1101.01013
[59] Sabatini, M., Characterizing isochronous centres by Lie brackets, Differential Equations Dynam. Systems, 5, 1, 91-99 (1997) · Zbl 0894.34021
[60] Segal, Sanford L., Nine introductions in complex analysis, North-Holland Mathematics Studies 208, xii+487 pp. (2008), Elsevier Science B.V., Amsterdam · Zbl 1233.30001
[61] Shub, Michael; Tischler, David; Williams, Robert F., The Newtonian graph of a complex polynomial, SIAM J. Math. Anal., 19, 1, 246-256 (1988) · Zbl 0653.58013 · doi:10.1137/0519018
[62] Smale, Steve, A convergent process of price adjustment and global Newton methods, J. Math. Econom., 3, 2, 107-120 (1976) · Zbl 0354.90018 · doi:10.1016/0304-4068(76)90019-7
[63] Smale, Steve, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. (N.S.), 4, 1, 1-36 (1981) · Zbl 0456.12012 · doi:10.1090/S0273-0979-1981-14858-8
[64] Speiser A. Speiser, Untersuchungen \"uber konforme und quasikonforme Abbildung, Dtsch. Math. 3 (1938). · JFM 64.0313.06
[65] Speiser, A., Ueber Riemannsche Fl\"achen, Comment. Math. Helv., 2, 1, 284-293 (1930) · JFM 56.0987.03 · doi:10.1007/BF01214465
[66] Strebel, Kurt, Quadratic differentials, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)] 5, xii+184 pp. (1984), Springer-Verlag, Berlin · Zbl 0547.30001 · doi:10.1007/978-3-662-02414-0
[67] Taniguchi, Masahiko, Explicit representation of structurally finite entire functions, Proc. Japan Acad. Ser. A Math. Sci., 77, 4, 68-70 (2001) · Zbl 1024.32001
[68] Taniguchi, Masahiko, Synthetic deformation space of an entire function. Value distribution theory and complex dynamics, Hong Kong, 2000, Contemp. Math. 303, 107-136 (2002), Amer. Math. Soc., Providence, RI · Zbl 1019.32013 · doi:10.1090/conm/303/05238
[69] Thurston, William P., Three-dimensional geometry and topology. Vol. 1, Princeton Mathematical Series 35, x+311 pp. (1997), Princeton University Press, Princeton, NJ · Zbl 0873.57001
[70] Volokitin, E. P.; Ivanov, V. V., Isochronicity and commutability of polynomial vector fields, Sibirsk. Mat. Zh.. Siberian Math. J., 40 40, 1, 23-38 (1999) · Zbl 0921.58053 · doi:10.1007/BF02674287
[71] Wu, Hung Hsi, Function theory on noncompact K\`“ahler manifolds. Complex differential geometry, DMV Sem. 3, 67-155 (1983), Birkh\'”auser, Basel · Zbl 0527.53042 · doi:10.1007/978-3-0348-6566-1\_2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.