×

On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules. (English) Zbl 1410.92059

Summary: This paper discusses and formulates a continuous-time SEIR -type epidemic model of pseudo-mass action type with finitely distributed delays under a very general, potentially time-varying, vaccination control rule which eventually generates feedback actions on the susceptible, infectious and recovered subpopulations. A lot of particular vaccination laws can be got from the proposed general one. The disease-free and endemic equilibrium points are characterized and their local stability properties discussed depending on the limits of the vaccination control gains provided that they converge asymptotically. Then, the global asymptotic stability to the disease-free equilibrium point is studied under an infective transmission rate below a certain maximum threshold. Later on, an extended SEIR epidemic model is discussed through simulated examples with stochastic Wiener-type perturbations around the equilibrium points.

MSC:

92C60 Medical epidemiology
92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Keeling, M.; Rohani, P., Modeling Infectious Diseases in Humans and Animals (2008), Princeton University Press: Princeton University Press New Jersey · Zbl 1279.92038
[2] (Mollison, D., Epidemic Models: Their Structure and Relation Data (1995), Publications of the Newton Institute, Cambridge University Press: Publications of the Newton Institute, Cambridge University Press Cambridge) · Zbl 0831.00011
[3] Nistal, R.; De la Sen, M.; Alonso-Quesada, S.; Ibeas, A., A nonlinear SEIR epidemic model with feedback vaccination control, (2014 European Control Conference. 2014 European Control Conference, Strasbourg, France (2014)), 158-164
[4] De la Sen, M.; Ibeas, A.; Alonso-Quesada, S., Feedback linearization-based vaccination control strategies for true-mass action type SEIR epidemic models, Nonlinear Anal.: Model. Control, 16, 3, 283-314 (2011) · Zbl 1271.93040
[5] De la Sen, M.; Agarwal, R. P.; Ibeas, A.; Alonso-Quesada, S., On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls, Adv. Differ. Equ., 2010, Article Article ID 281612 pp. (2010) · Zbl 1219.34104
[6] Liu, X.; Zhong, S.; Ding, X., “Robust exponential stability of nonlinear impulsive switched systems with time-varying delays, Nonlinear Anal.: Model. Control, 17, 2, 210-222 (2012) · Zbl 1307.93354
[7] Gao, S.; He, Y.; Chen, L., An epidemic model with pulses for pest management, Appl. Math. Comput., 219, 9, 4308-4321 (2013) · Zbl 1402.92389
[8] Wang, Y.; Wang, Z. C., Entire solutions in a time-delayed and diffusive epidemic model, Appl. Math. Comput., 219, 10, 5033-5041 (2013) · Zbl 1321.92078
[9] Lahrouz, A.; Settati, A., Asymptotic properties of switching diffusion epidemic model with varying population size, Appl. Math. Comput., 219, 24, 11134-11148 (2013) · Zbl 1304.92121
[10] Zhao, Y. T.; Jiang, D., The threshold of a stochastic SIRS epidemic model with saturated incidence, Appl. Math. Lett., 34, 90-93 (2014) · Zbl 1314.92174
[11] Beretta, E.; Kolmanovskii, V.; Shaikhet, L., Stability of epidemic model with time delays influenced by stochastic perturbations, Math. Comput. Simul., 45, 269-277 (1998) · Zbl 1017.92504
[12] Lahrouz, A.; Omari, L.; Kiouach, D., Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model, Nonlinear Anal.: Model. Control, 16, 1, 59-76 (2011) · Zbl 1271.93015
[13] Artalejo, J. R.; Lopez- Herrero, M. J., Stochastic epidemic models: new behavioral indicators of the disease spreading, Appl. Math. Model., 38, 4371-4387 (2014) · Zbl 1428.92101
[14] De la Sen, M.; Agarwal, R. P.; Ibeas, A.; Alonso-Quesada, S., On the existence of equilibrium points, boundedness, oscillating behaviour and positivity of a SVEIRS epidemic model under constant and impulsive vaccination, Adv. Differ. Equ., 2011, Article Article ID 748608 pp. (2011) · Zbl 1219.34066
[15] Xu, R., Global dynamics of a delayed epidemic model with latency and relapse, Nonlinear Anal.: Model. Control, 18, 2, 250-263 (2013) · Zbl 1295.93005
[16] Mateus, J. P.; Silva, C. M., A non-autonomous SEIRS model with general incidence rate, Appl. Math. Comput., 247, 169-189 (2014) · Zbl 1338.92133
[17] Tchuenche, J. M.; Nwagwo, A.; Levins, R., Global behaviour of an SIR epidemic model with time delay, Math. Methods Appl. Sci., 30, 6, 733-749 (2007) · Zbl 1112.92055
[18] Zhou, L.; Zhang, W. G.; Yuan, L., Survival and stationary distribution of a SIR epidemic model with stochastic perturbations, Appl. Math. Comput., 244, 118-131 (2014) · Zbl 1335.92109
[19] Evans, L. C., An Introduction to Stochastic Differential Equations (2013), American Mathematical Society: American Mathematical Society Providence, Rhode Island · Zbl 1416.60002
[20] Dorato, P.; Fortuna, L.; Muscato, G., Robust control for unstructured perturbations: an introduction, Lecture Notes in Control and Information Sciences, 168 (1992), Springer-Verlag: Springer-Verlag Heidelberg, Germany · Zbl 0941.93504
[21] Boyd, S.; Balakrishnan, V.; Kabamba, P., On computing the \(H_∞\) norm of a transfer matrix, (Proceedings of the American Control Conference. Proceedings of the American Control Conference, Atlanta (1988)), 396-397
[22] Delasen, M., On some structures of stabilizing control laws for linear and time-invariant systems with bounded point delays and unmeasurable states, Int. J. Control, 59, 2, 529-541 (1994) · Zbl 0799.93048
[23] Chen, L. J.; Sun, J. T., Optimal vaccination and treatment of an epidemic network model, Phys. Lett. A, 378, 1, 3028-3036 (2014) · Zbl 1298.92095
[24] De la Sen, M.; Alonso-Quesada, S., Vaccination strategies based on feedback control techniques for the SEIR-epidemic model, Appl. Math. Comput., 218, 7, 3888-3904 (2011) · Zbl 1238.92030
[25] Zhang, J. C.; Sun, J. T., A delayed SEIRS epidemic model with impulsive vaccination and nonlinear incidence rate, Int. J. Biomath., 7, 3, Article Article ID 1450032 pp. (2014) · Zbl 1306.34133
[26] Lakshmanan, S.; Mathiyalagan, K.; Park, J. H.; Sakthivel, R.; Rihan, F. A., Delay-dependent H-infinity state estimation of neural networks with mixed time-varying delays, Neurocomputing, 129, 392-400 (2014)
[27] Zhao, J. J.; Wang, J.; Park, J. H.; Shen, H., Memory feedback controller design for stochastic Markov jump distributed delay systems with input saturation and partially known transition rates, Nonlinear Anal.: Hybrid Syst., 15, 52-62 (2014) · Zbl 1301.93153
[28] Sun, G. Q.; Jin, Z.; Liu, Q. X.; Li, L., Pattern formation in a spatial SI-model with nonlinear incidence rates, J. Stat. Mech.: Theory Exp., 2007, 11, P11011 (2007)
[29] Sun, G. Q.; Jin, Z.; Liu, Q. X.; Li, L., Chaos induced by breakup of waves in a spatial epidemic model with nonlinear incidence rate, J. Stat. Mech.: Theory Exp., 2008, 8, P08011 (2008)
[30] Sun, G. Q.; Jin, Z.; Liu, Q. X.; Chakraborty, A.; Li, B. L., Influence of infection rate and migration of extinction of disease in spatial epidemics, J. Theor. Biol., 264, 1, 95-103 (2010) · Zbl 1406.92620
[31] Sun, G. Q.; Jin, Z.; Liu, Q. X.; Li, L., Spatial pattern in an epidemic system with cross-diffusion of the susceptible, J. Biol. Syst., 17, 1, 141-152 (2009) · Zbl 1364.92053
[32] Sun, G. Q., Pattern formation of an epidemic model with diffusion, Nonlinear Dyn., 69, 3, 1097-1104 (2012)
[33] De la Sen, M., Hyers-Ulam-Rassias stability of functional differential systems with point and distributed delays, Discrete Dyn. Nat. Soc., 2015, Article Article ID 492515 pp. (2015) · Zbl 1418.39025
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.