×

Comparative analysis of algorithms for solving inverse problems related to monochromatic monitoring the deposition of multilayer optical coatings. (English. Russian original) Zbl 1478.78034

Comput. Math. Math. Phys. 61, No. 9, 1504-1510 (2021); translation from Zh. Vychisl. Mat. Mat. Fiz. 61, No. 9, 1528-1535 (2021).
Summary: The paper presents a comparative analysis of three fundamentally different algorithms for solving inverse problems of monitoring the layer thicknesses of optical coatings based on the data of monochromatic measurements of the reflection/transmission coefficients during deposition process. The previously developed geometric approach to the study of the thickness error correlation of deposited coatings is extended to the case of monochromatic measurements. A new parameter called the self-compensation factor was introduced to estimate the effect of error self-compensation. Its role in assessing the prospects for using various algorithms for coating deposition monitoring is shown.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78-05 Experimental work for problems pertaining to optics and electromagnetic theory
78A55 Technical applications of optics and electromagnetic theory
78M99 Basic methods for problems in optics and electromagnetic theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Optical Thin Films and Coatings, Ed. by A. Piegari and F. Flory, 2nd ed. (Woodhead, UK, Cambridge, 2018).
[2] A. Tikhonravov, M. Trubetskov, and T. Amotchkina, “Production strategies for high precision optical coatings,” Optical Thin Films and Coatings, Ed. by A. Piegari and F. Flory, 2nd ed. (Woodhead, UK, Cambridge, 2018).
[3] Macleod, H. A., Thin-Film Optical Filters (2010) · doi:10.1201/9781420073034
[4] Tikhonravov, A. V.; Trubetskov, M. K.; Amotchkina, T. V., Investigation of the effect of accumulation of thickness errors in optical coatings production using broadband optical monitoring, Appl. Opt., 45, 7026-7034 (2006) · doi:10.1364/AO.45.007026
[5] Macleod, H. A., Turning value monitoring of narrow-band all-dielectric thin-film optical filters, Opt. Acta, 19, 1-28 (1972) · doi:10.1080/713818494
[6] Bousque, P.; Fornier, A.; Kowalczyk, R.; Pelletier, E.; Roche, P., Optical filters: Monitoring process allowing the auto-correction of thickness errors, Thin Solid Films, 13, 285-290 (1972) · doi:10.1016/0040-6090(72)90297-0
[7] Tikhonravov, A.; Kochikov, I.; Yagola, A., Mathematical investigation of the error self-compensation mechanism in optical coating technology, Inverse Probl. Sci. Eng., 26, 1214 (2018) · Zbl 1409.74017 · doi:10.1080/17415977.2017.1395424
[8] Tikhonravov, A. V.; Kochikov, I. V.; Matvienko, I. A.; Sharapova, S. A.; Yagola, A. G., Estimates related to the error self-compensation mechanism in optical coatings deposition, Moscow Univ. Phys. Bull., 73, 627-631 (2018) · doi:10.3103/S0027134918060243
[9] Tikhonravov, A. V.; Kochikov, I. V.; Matvienko, I. A.; Isaev, T. F.; Lukyanenko, D. V.; Sharapova, S. A., Correlation of errors in optical coating production with broad band monitoring, Numer. Methods Program., 19, 439-447 (2018)
[10] Tikhonravov, A.; Kochikov, I.; Matvienko, I.; Isaev, T.; Yagola, A., Strategies of broadband monitoring aimed at minimizing deposition errors, Coatings, 9, 1-10 (2019) · doi:10.3390/coatings9120809
[11] Kochikov, I. V.; Sharapova, S. A.; Yagola, A. G.; Tikhonravov, A. V., Correlation of errors in inverse problems of optical coatings monitoring, J. Inverse Ill-Posed Probl., 28, 915-921 (2020) · Zbl 1484.78007 · doi:10.1515/jiip-2020-0079
[12] Kochikov, I. V.; Lagutin, Yu. S.; Lagutina, A. A.; Lukyanenko, D. V.; Tikhonravov, A. V.; Yagola, A. G., Stable method for optical monitoring the deposition of multilayer optical coatings, Comput. Math. Math. Phys., 60, 2056-2063 (2020) · Zbl 1455.78013 · doi:10.1134/S0965542520120064
[13] Macleod, A., Monitoring of optical coatings, Appl. Opt., 20, 82-89 (1981) · doi:10.1364/AO.20.000082
[14] Kochikov, I. V.; Lagutin, Yu. S.; Lagutina, A. A.; Lukyanenko, D. V.; Tikhonravov, A. V.; Yagola, A. G., A nonlocal algorithm for analyzing the data of monochromatic optical control in the process of multilayer coating deposition, Numer. Methods Program., 20, 471-480 (2019)
[15] Kochikov, I. V.; Lagutin, Yu. S.; Lagutina, A. A.; Lukyanenko, D. V.; Tikhonravov, A. V.; Yagola, A. G., Raising the accuracy of monitoring the optical coating deposition by application of a nonlocal algorithm of data analysis, J. Appl. Ind. Math., 14, 330-339 (2020) · Zbl 1455.78013 · doi:10.1134/S1990478920020118
[16] Zhupanov, V.; Kozlov, I.; Fedoseev, V.; Konotopov, P.; Trubetskov, M.; Tikhonravov, A., Production of Brewster angle thin film polarizers using a ZrO_2/SiO_2 pair of materials, Appl. Opt., 56, 30-34 (2017) · doi:10.1364/AO.56.000C30
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.