×

Interpretation of trajectory control and optimization for the nondense fractional system. (English) Zbl 1513.93008

Summary: In this work, we have examined the trajectory controllability of the fractional delay differential equation with a nondense domain. The results are developed using fractional calculus theory and semigroup operator. Further, we drive the system for the existence of optimal pairs using precision measures. An illustration is given to verify the obtained outcomes.

MSC:

93B05 Controllability
93C25 Control/observation systems in abstract spaces
47J35 Nonlinear evolution equations
34K37 Functional-differential equations with fractional derivatives
34K30 Functional-differential equations in abstract spaces
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Agarwal, P.; Sidi Ammi, MR; Asad, J., Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense, Adv. Diff. Equ., 2021, 21, 1-11 (2021) · Zbl 1494.26067
[2] Alattas, KA; Mobayen, S.; Din, Sami Ud; Asad, J.; Fekih, A.; Assawinchaichote, W.; Vu, MT, Design of a non-singular adaptive integral-Type finite time tracking control for nonlinear systems with external disturbances, IEEE Access, 9, 102091-102103 (2021) · doi:10.1109/ACCESS.2021.3098327
[3] Attia, N.; Akgül, A.; Seba, D.; Nour, A.; Asad, J., A novel method for fractal-fractional differential equations, Alexandria Eng. J., 61, 12, 9733-9748 (2022) · doi:10.1016/j.aej.2022.02.004
[4] Bahaa, GM, Optimal control problem and maximum principle for fractional order cooperative systems, Kybernetika, 55, 2, 337-358 (2019) · Zbl 1463.49005
[5] Balder, EJ, Necessary and sufficient conditions for L1-strong-weak lower semi-continuity of integral functionals, Nonlinear Anal., 11, 12, 1399-1404 (1987) · Zbl 0638.49004 · doi:10.1016/0362-546X(87)90092-7
[6] Basile, G.; Hamano, F., On the smoothness of the output trajectories for a linear dynamic system, IEEE Trans. Autom. Control, 27, 1, 196-198 (1982) · Zbl 0471.93007 · doi:10.1109/TAC.1982.1102881
[7] Chalishajar, DN; George, Raju K.; Nandakumar, AK; Acharya, FS, Trajectory controllability of nonlinear integro-differential system, J. Franklin Inst., 347, 7, 1065-1075 (2010) · Zbl 1202.93011 · doi:10.1016/j.jfranklin.2010.03.014
[8] Cacace, F.; Cusimano, V.; Germani, A.; Palumbo, P.; Papi, M., Optimal continuous-discrete linear filter and moment equations for nonlinear diffusions, IEEE Trans. Autom. Control, 65, 10, 3961-3976 (2020) · Zbl 07319981 · doi:10.1109/TAC.2019.2953456
[9] Diaz-Garcia, JA; Requejo-Lopez, R., Use of nonlinear regression and nonlinear mathematical programming in the formulation of substrate mixtures for soil-less culture - a review, J. Soil Sci. Plant Nutrit., 12, 1, 87-97 (2012) · doi:10.4067/S0718-95162012000100008
[10] Dhayal, R.; Muslim, M.; Abbas, S., Approximate and trajectory controllability of fractional neutral differential equation, Adv. Oper. Theory, 4, 4, 802-820 (2019) · Zbl 1458.93026 · doi:10.15352/aot.1812-1444
[11] Fernando, JAKM; Amarasinghe, ADUS, Drying kinetics and mathematical modeling of hot air drying of coconut coir pith, SpringerPlus, 5, 1-12 (2016) · doi:10.1186/s40064-016-2387-y
[12] Fesharaki, SJ; Kamali, M.; Sheikholeslam, F.; Talebi, HA, Robust model predictive control with sliding mode for constrained non-linear systems, IET Control Theory Appl., 14, 17, 2592-2599 (2020) · Zbl 1483.93147 · doi:10.1049/iet-cta.2019.1357
[13] Fu, XL, On solutions of neutral nonlocal evolution equations with nondense domain, J. Math. Anal. Appl., 299, 392-410 (2004) · Zbl 1064.34065 · doi:10.1016/j.jmaa.2004.02.062
[14] Gatsori, EP, Controllability results for nondensely defined evolution differential inclusions with nonlocal conditions, J. Math. Anal. Appl., 297, 194-211 (2004) · Zbl 1059.34037 · doi:10.1016/j.jmaa.2004.04.055
[15] Govindaraj, V.; Muslim, M.; George, RK, Trajectory controllability of fractional dynamical systems, J. Control Decis., 4, 2, 114-130 (2017)
[16] Govindaraj, V.; George, RK, Trajectory controllability of fractional integrodifferential systems in Hilbert spaces, Asian J. Control, 20, 5, 1994-2004 (2018) · Zbl 1407.93071 · doi:10.1002/asjc.1685
[17] Gu, H.; Zhou, Y.; Ahmad, B.; Alsaedi, A., Integral solutions of fractional evolution equations with nondense domain, Electronic, J. Diff. Equ., 145, 1-15 (2017) · Zbl 1377.34010
[18] Jothimani, K.; Valliammal, N.; Ravichandran, C., Existence result for a neutral fractional integrodifferential equation with state dependent delay, J. Appl. Nonlinear Dyn., 7, 4, 371-381 (2018) · Zbl 1407.34012 · doi:10.5890/JAND.2018.12.005
[19] Jothimani, K.; Kaliraj, K.; Hammouch, Z.; Ravichandran, C., New results on controllability in the framework of fractional integrodifferential equations with non-dense domain, European Phys. J. Plus, 134, 441, 1-10 (2019)
[20] Jothimani, K.; Kaliraj, K.; Panda, SK; Nisar, KS; Ravichandran, C., Results on controllability of non-densely characterized neutral fractional delay differential system, Evolut. Equ. Control Theory, 10, 3, 619-631 (2021) · Zbl 1469.93009 · doi:10.3934/eect.2020083
[21] Jiang, YR; Huang, NJ, Solvability and optimal controls of fractional delay evolution inclusions with Clarke subdifferential, Math. Methods Appl. Sci., 40, 8, 3026-3039 (2017) · Zbl 1373.49014 · doi:10.1002/mma.4218
[22] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. In: North-Holland mathematics studies, vol 204. Elsevier Science, Amsterdam, (2006) · Zbl 1092.45003
[23] Kumar, V.; Malik, M.; Debbouche, A., Total controllability of neutral fractional differential equation with non-instantaneous impulsive effects, J. Comput. Appl. Math., 383 (2021) · Zbl 1448.93029 · doi:10.1016/j.cam.2020.113158
[24] Komolafe, CA; Ojediran, JO; Ajao, FO; Dada, OA; Afolabi, YT; Oluwaleye, IO; Alake, AS, Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode, Case Stud. Thermal Eng., 15 (2019) · doi:10.1016/j.csite.2019.100542
[25] Muslim, M.; Kumar, A., Trajectory controllability of fractional differential systems of order a \(\alpha \in (1,2]\) with deviated argument, J. Anal., 28, 295-304 (2020) · Zbl 1437.34078 · doi:10.1007/s41478-018-0081-x
[26] Muslim, M.; George, RK, Trajectory controllability of the nonlinear systems governed by fractional differential equations, Diff. Equ. Dyn. Syst., 27, 529-537 (2019) · Zbl 1434.34015 · doi:10.1007/s12591-016-0292-z
[27] Muslim, M.; Kumar, A.; Agarwal, R., Exact and trajectory controllability of second order nonlinear differential equations with deviated argument, Funct. Diff. Equ., 23, 1-2, 27-41 (2016) · Zbl 1358.34086
[28] Nisar, KS; Jothimani, K.; Kaliraj, K.; Ravichandran, C., An analysis of controllability results for nonlinear Hilfer neutral fractional derivatives with non-dense domain, Chaos Solitons Fractals, 146 (2021) · Zbl 1498.34215 · doi:10.1016/j.chaos.2021.110915
[29] Pazy, A., Semigroups of linear operators and applications to partial differential equations (1983), New York: Springer-verlag, New York · Zbl 0516.47023 · doi:10.1007/978-1-4612-5561-1
[30] Pan, X.; Li, X.; Zhao, J., Solvability and optimal controls of semi linear Riemann- Liouville fractional differential equations, Abstr. Appl. Anal., 2014 (2014) · Zbl 1472.49013 · doi:10.1155/2014/216919
[31] Podlubny, I.: Fractional Differential Equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. Academic Press, San Diego (1999) · Zbl 0924.34008
[32] Ravichandran, C.; Baleanu, D., On the controllability of fractional functional integro-differential systems with an infinite delay in Banach spaces, Adv. Diff. Equ. (2013) · Zbl 1391.93042 · doi:10.1186/1687-1847-2013-291
[33] Qin, H.; Zuo, X.; Liu, J.; Liu, L., Approximate controllability and optimal controls of fractional dynamical systems of order \(1<q<2\) in Banach space, Adv. Diff. Equ. (2015) · Zbl 1346.49007 · doi:10.1186/s13662-015-0399-5
[34] Raja, MM; Vijayakumar, V.; Udhayakumar, R., Results on the existence and controllability of fractional integro-differential system of order \(1< r< 2\) via measure of noncompactness, Chaos Solitons Fractals, 139 (2020) · Zbl 1490.34093 · doi:10.1016/j.chaos.2020.110299
[35] Rojsiraphisal, T.; Mobayen, S.; Asad, J.; Vu, MT; Chang, A.; Puangmalai, J., Fast terminal sliding control of underactuated robotic systems based on disturbance observer with experimental validation, Mathematics, 9, 16, 1-17 (2021) · doi:10.3390/math9161935
[36] Slotine, JJE; Li, W., Applied Nonlinear Control (1991), New Jersey: Prentice Hall, New Jersey · Zbl 0753.93036
[37] Trigeassou, JC; Maamri, N., Optimal state control of fractional order differential systems: the infinite state approach, Fractal Fract. (2021) · Zbl 1451.34003 · doi:10.3390/fractalfract5020029
[38] Valliammal, N.; Ravichandran, C., Results on fractional neutral integrodifferential systems with state dependent delay in Banach spaces, Nonlinear Stud., 25, 1, 159-171 (2018) · Zbl 1476.34155
[39] Vijayakumar, V., Approximate controllability results for nondensely defined fractional neutral differential inclusions with Hille Yosida operators, Int. J. Control, 92, 9, 2210-2222 (2019) · Zbl 1421.93023 · doi:10.1080/00207179.2018.1433331
[40] Wang, JR; Zhou, Y.; Medved, M., On the solvability and optimal controls of fractional integrodifferential evolution systems with infinite delay, J. Optim. Theory Appl., 152, 31-50 (2012) · Zbl 1357.49018 · doi:10.1007/s10957-011-9892-5
[41] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.