×

Convex polynomial approximation in \(\mathbb{R}^d\) with Freud weights. (English) Zbl 1312.41012

On \(\mathbb{R}^d\) consider the Freud weight \(W_{\alpha}({\mathbf x})=e^{-|{\mathbf x}|^{\alpha}}\), \(\alpha>1\), where \({\mathbf x}=(x_1,\ldots,x_d)\in\mathbb{R}^d\), \(|{\mathbf x}|=(x_1^2+\ldots+x_d^2)^{1/2}\). Denote \(C_{W_{\alpha}}(\mathbb{R}^d):=\{f\in C(\mathbb{R}^d),\;\lim_{|{\mathbf x}|\to\infty}W_{\alpha}({\mathbf x})f({\mathbf x})=0\}\). For \(1\leq p\leq\infty\), denote by \(L_p(\mathbb{R}^d)\) the space of measurable functions \(f:\mathbb{R}^d\to\mathbb{R}\), such that \(\| f\|_{L_p(\mathbb{R}^d)}<\infty\), where \(\| f\|_{L_p(\mathbb{R}^d)}=(\int_{\mathbb{R}^d}|f({\mathbf x})|^pd{\mathbf x})^{1/p}\), for \(1\leq p<\infty\) and \(\| f\|_{L_{\infty}(\mathbb{R}^d)}=\) esssup\(_{{\mathbf x}\in\mathbb{R}^d}|f({\mathbf x})|\), for \(p=\infty\). Let \(\Pi_{n,d}^{(2)}\) be the space of convex polynomials on \(\mathbb{R}^d\), with the total degree \(\leq n\). The main result is the following. If \(f:\mathbb{R}^d\to \mathbb{R}\) is convex on \(\mathbb{R}^d\) and \(fW_{\alpha}\in L_p(\mathbb{R}^d)\), for \(1\leq p<\infty\) and \(f\in C_{W_{\alpha}}(\mathbb{R}^d)\), for \(p=\infty\), then \[ \inf_{P\in \Pi_{n,d}^{(2)}}\| (f-P)W_{\alpha}\|_{L_p(\mathbb{R}^d)}=0,\;n\to\infty. \]

MSC:

41A10 Approximation by polynomials
41A63 Multidimensional problems
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DeVore, Ronald A.; Lorentz, George G., (Constructive Approximation. Constructive Approximation, Grundlehren der Mathematischen Wissenschaften, vol. 303 (1993), Springer-Verlag: Springer-Verlag Berlin) · Zbl 0797.41016
[2] Ganzburg, Michael, Restricted range inequalities in multivariate weighted approximation, (Approximation Theory XI: Gatlinburg (2004)), 175-184 · Zbl 1081.41011
[3] Kopotun, K. A.; Leviatan, D.; Prymak, A.; Shevchuk, I. A., Uniform and pointwise shape preserving approximation by algebraic polynomials, Surv. Approx. Theory, 6, 24-74 (2011) · Zbl 1296.41001
[4] Kroó, András, On weighted polynomial approximation on the plane, East J. Approx., 1, 1, 73-81 (1995) · Zbl 0919.41006
[5] Kroó, András; Révész, Szilárd, On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies, J. Approx. Theory, 99, 1, 134-152 (1999) · Zbl 0952.41012
[6] Leviatan, Dany; Lubinsky, Doron S., The degree of shape preserving weighted polynomial approximation, J. Approx. Theory, 164, 2, 218-228 (2012) · Zbl 1262.41005
[7] Lubinsky, D. S., A survey of weighted polynomial approximation with exponential weights, Surv. Approx. Theory, 3, 1-105 (2007) · Zbl 1181.41004
[8] Maizlish, Oleksandr, Shape preserving approximation on the real line with exponential weights, J. Approx. Theory, 157, 2, 127-133 (2009) · Zbl 1184.41006
[9] Sarantopoulos, Yannis, Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Cambridge Philos. Soc., 110, 2, 307-312 (1991) · Zbl 0761.46035
[10] Shvedov, A. S., Comonotone approximation of functions of several variables by polynomials, Math. Sb., 115, 4, 577-589 (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.