×

Fracture saturation and critical thickness in layered materials. (English) Zbl 1193.74133

Summary: Opening-mode fractures in layered materials are commonly found in a layer with uniform spacing that is nearly proportional to the thickness of the fractured layer. However, when fracture spacing reduces to a certain value, fracture density is saturated and no new fracture forms. If a loading condition is fixed, there exists a critical thickness of the layer, below which no fracture forms. This paper presents a three-layer model, containing a weak layer between two stronger layers, to interpret the fracture saturation and critical thickness of layered materials. Using elastic governing equations and a weak form stress boundary condition, a closed-form solution of elastic fields in the weak layer is derived and the energy release rate for opening-mode fracture is obtained. Interestingly, the normal stress between such fractures undergoes a transition from tensile to compressive with increasing applied tensile loading, which causes fracture saturation. Explicit expressions of critical fracture-spacing-to-layer-thickness ratio and critical thickness are derived for fracture saturation and fracture free conditions, respectively. Comparison with the existing numerical simulation results demonstrates the capability of this model. This explicit, analytical solution is useful to structural design and geosciences.

MSC:

74R10 Brittle fracture
74K35 Thin films
74E30 Composite and mixture properties
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agrawal, D. C.; Raj, R.: Measurement of the ultimate shear-strength of a metal ceramic interface, Acta metall. 37, 1265-1270 (1989)
[2] Bai, T. X.; Pollard, D. D.: Spacing of fractures in a multilayer at fracture saturation, Int. J. Fracture 100, 23-28 (2000)
[3] Bai, T. X.; Pollard, D. D.: Fracture spacing in layered rocks: a new explanation based on the stress transition, J. struct. Geol. 22, 43-57 (2000)
[4] Bai, T.; Pollard, D. D.; Gao, H.: Explanation for fracture spacing in layered materials, Nature 403, 753-756 (2000)
[5] Bai, T. X.; Pollard, D. D.; Gross, M. R.: Mechanical prediction of fracture aperture in layered rocks, J. geophys. Res.-solid Earth 105, 707-721 (2000)
[6] Beuth, J. L.: Cracking of thin bonded films in residual tension, Int. J. Solids struct. 29, 1657-1675 (1992)
[7] Beuth, J. L.; Klingbeil, N. W.: Cracking of thin films bonded to elastic – plastic substrates, J. mech. Phys. solids 44, 1411-1428 (1996)
[8] Boresi, A. P.; Schmidt, R. J.: Advanced mechanics of materials, (2005)
[9] Chen, B. F.; Hwang, J.; Chen, I. F.; Yu, G. P.; Huang, J. -H.: A tensile-film-cracking model for evaluating interfacial shear strength of elastic film on ductile substrate, Surf. coat. Technol. 126, 91-95 (2000)
[10] Feng, X.; Huang, Y.; Rosakis, A. J.: Multi-layer thin films/substrate system subjected to non-uniform misfit strains, Int. J. Solids struct. 45, 3688-3698 (2008) · Zbl 1169.74480
[11] Hobbs, D. W.: The formation of tension joints in sedimentary rocks: an explanation, Geol. mag. 104, 550-556 (1967)
[12] Hu, M. S.; Evans, A. G.: The cracking and decohesion of thin films on ductile substrates, Acta metall. 37, 917-925 (1989)
[13] Hutchinson, J. W.; Suo, Z.: Mixed mode cracking in layered materials, Adv. appl. Mech. 29, 63-191 (1992) · Zbl 0790.73056
[14] Liang, J.; Huang, R.; Prevost, J. H.; Suo, Z.: Evolving crack patterns in thin films with the extended finite element method, Int. J. Solids struct. 40, 2343-2354 (2003) · Zbl 1087.74639
[15] Liu, X. H.; Suo, Z.; Ma, Q.: Split singularities: stress field near the edge of a silicon die on a polymer substrate, Acta mater. 47, 67-76 (1999)
[16] Saif, M. T. A.; Hui, C. Y.; Zehnder, A. T.: Interface shear stresses induced by non-uniform heating of a film on a substrate, Thin solid films 224, 159-167 (1993)
[17] Shenoy, V. B.; Schwartzman, A. F.; Freund, L. B.: Crack patterns in brittle thin films, Int. J. Fracture 109, 29-45 (2001)
[18] Shevchuk, V. A.; Silberschmidt, V. V.: Semi-analytical analysis of thermally induced damage in thin ceramic coatings, Int. J. Solids struct. 42, 4738-4757 (2005) · Zbl 1119.74540
[19] Suhir, E.: Interfacial stresses in bimetal thermostats, ASME J. Appl. mech. 53, 657-660 (1986) · Zbl 0711.73017
[20] Suhir, E.: Structural analysis in microelectronic and fiber – optic systems, (1991)
[21] Suhir, E.: Predicted thermally induced stresses in, and the bow of, a circular substrate/thin-film structure, J. appl. Phys. 88, 2363-2370 (2000)
[22] Tang, C. A.; Liang, Z. Z.; Zhang, Y. B.; Chang, X.; Tao, X.; Wang, D. G.; Zhang, J. X.; Liu, J. S.; Zhu, W. C.; Elsworth, D.: Fracture spacing in layered materials: a new explanation based on two-dimensional failure process modeling, Am. J. Sci. 308, 49-72 (2008)
[23] Thouless, M. D.; Olsson, E.; Gupta, A.: Cracking of brittle films on elastic substrates, Acta metall. Mater. 40, 1287-1292 (1992)
[24] Timm, D. H.; Guzina, B. B.; Voller, V. R.: Prediction of thermal crack spacing, Int. J. Solids struct. 40, 125-142 (2003) · Zbl 1010.74590
[25] Xia, Z. C.; Hutchinson, J. W.: Crack patterns in thin films, J. mech. Phys. solids 48, 1107-1131 (2000) · Zbl 0966.74063
[26] Yin, H.M., Buttlar, W.G., Paulino, G.H., 2005. A two-dimensional elastic model of pavements with thermal failure discontinuities. In: Proceedings of the Third MIT Conference on Computational Fluid Solid Mechanics, vol. 3, pp. 539 – 542.
[27] Yin, H. M.; Buttlar, W. G.; Paulino, G. H.: Periodic thermal cracking in an asphalt overlay bonded to a rigid pavement, J. transp. Eng. – ASCE 133, 39-46 (2007)
[28] Yin, H. M.; Paulino, G. H.; Buttlar, W. G.; Sun, L. Z.: Micromechanics-based thermoelastic model for functionally graded particulate materials with particle interactions, J. mech. Phys. solids 55, 132-160 (2007) · Zbl 1171.74004
[29] Yin, H. M.; Paulino, G. H.; Buttlar, W. G.: An explicit elastic solution for a brittle film with periodic cracks, Int. J. Fracture 153, 39-52 (2008) · Zbl 1273.74486
[30] Yin, H.M., 2010a. Comments on ”influence of interfacial compliance on thermomechanical stresses in multilayered microelectronic packaging” (IEEE Trans. Adv. Packag., 29, 666 – 673, 2006), IEEE Trans. Adv. Packag.
[31] Yin, H.M., 2010b. Opening-mode cracking in asphalt pavements: crack initiation and saturation, Road Mater. Pavement Des.
[32] Yu, H. H.; He, M. Y.; Hutchinson, J. W.: Edge effects in thin film delamination, Acta mater. 49, 93-107 (2001)
[33] Zhao, M. -H.; Fu, R.; Lu, D.; Zhang, T. -Y.: Critical thickness for cracking of \(Pb(Zr0.53Ti0.47)\)O3 thin films deposited on \(Pt/ti/si(100)\) substrates, Acta mater. 50, 4241-4254 (2002)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.