×

Boundary behaviour of universal Taylor series. (Comportement à la frontière des séries de Taylor universelles.) (English. French summary) Zbl 1297.30083

The authors improve several known results on the strong growth properties at every boundary point of functions in \(\mathcal{U}\), the set of all universal Taylor series, in the literature also denoted as \(\mathcal{U}(\mathbb{D},0)\). A power series \(f\) that converges on the unit disc \(\mathbb{D}\) belongs to \(\mathcal{U}\) if its partial sums approximate arbitrary polynomials on arbitrary compacta in \(\mathbb{C} \setminus \mathbb{D}\) that have connected complement.
In detail they show that if \(\psi : [0,1) \to (0,\infty)\) is an increasing function with \(\int_0^1 \log^+ \log^+ \psi(t) \,dt < \infty\), and the power series \(f\) satisfies \(|f(z)| \leq \psi(|z|)\) on \(D(w,r) \cap \mathbb{D}\), \(D(w,r) = \{ z : |z-w| < r\}\), for some \(w\) on the unit circle \(\mathbb{T}\) and \(r > 0\), then \(f \notin U\). An analogue of this theorem holds for universal polynomial expansions of harmonic functions in terms of homogeneous polynomials.
As a corollary they obtain a Picard-type property of universal Taylor series. A function \(f \in \mathcal{U}\) assumes every complex value, with at most one exception, infinitely often on \(D(w,r) \cap \mathbb{D}\) for every \(w \in \mathbb{T}\) and \(r > 0\).
They further prove that any function \(f \in \mathcal{U}\) must assume all but one complex value in any angle at “most” boundary points. As angular approach regions they consider \[ \Gamma_\alpha^t(w) := \big\{ z : 1-t < |z| < 1, |z-w| < \alpha\big( 1 - |z| \big) \big\}, \quad w \in \mathbb{T}, \alpha > 1, t \in (0,1]. \] “Most” points means that \(\mathbb C \setminus f\big( \Gamma_\alpha^t(w) \big)\) contains at most one point for all \(w\) in a residual set \(E \subset \mathbb{T}\). Moreover, no member of \(\mathcal{U}\) belongs to any Bergman or Bergman-Nevanlinna class on \(\mathbb{D}\).

MSC:

30K05 Universal Taylor series in one complex variable
30B30 Boundary behavior of power series in one complex variable; over-convergence
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Ahlfors, L. V., An extension of Schwarzʼs lemma, Trans. Amer. Math. Soc., 43, 359-364 (1938) · JFM 64.0315.04
[2] Armitage, D. H.; Costakis, G., Boundary behavior of universal Taylor series and their derivatives, Constr. Approx., 24, 1-15 (2006) · Zbl 1098.30003
[3] Armitage, D. H.; Gardiner, S. J., Classical Potential Theory (2001), Springer: Springer London · Zbl 0972.31001
[4] Bayart, F., Boundary behavior and Cesàro means of universal Taylor series, Rev. Mat. Complut., 19, 235-247 (2006) · Zbl 1103.30003
[5] Bayart, F.; Grosse-Erdmann, K.-G.; Nestoridis, V.; Papadimitropoulos, C., Abstract theory of universal series and applications, Proc. Lond. Math. Soc., 96, 417-463 (2008) · Zbl 1147.30003
[6] Bernal-González, L.; Bonilla, A.; Calderón-Moreno, M. C.; Prado-Bassas, J. A., Universal Taylor series with maximal cluster sets, Rev. Mat. Iberoam., 25, 757-780 (2009) · Zbl 1186.30003
[7] Costakis, G., On the radial behavior of universal Taylor series, Monatshefte Math., 145, 11-17 (2005) · Zbl 1079.30002
[8] Costakis, G.; Melas, A., On the range of universal functions, Bull. Lond. Math. Soc., 32, 458-464 (2000) · Zbl 1023.30003
[9] Domar, Y., On the existence of a largest subharmonic minorant of a given function, Ark. Mat., 3, 429-440 (1957) · Zbl 0078.09301
[10] Gardiner, S. J., Boundary behaviour of functions which possess universal Taylor series, Bull. Lond. Math. Soc., 45, 191-199 (2013) · Zbl 1272.30081
[11] Gardiner, S. J., Universal Taylor series, conformal mappings and boundary behaviour, Ann. Inst. Fourier, 63 (2013), in press
[12] Gauthier, P. M.; Tamptse, I., Universal overconvergence of homogeneous expansions of harmonic functions, Analysis, 26, 287-293 (2006) · Zbl 1132.31002
[13] Manolaki, M., Universal polynomial expansions of harmonic functions, Potential Anal., 38, 985-1000 (2013) · Zbl 1271.31003
[14] Melas, A., On the growth of universal functions, J. Anal. Math., 82, 1-20 (2000) · Zbl 0973.30002
[15] Melas, A.; Nestoridis, V., Universality of Taylor series as a generic property of holomorphic functions, Adv. Math., 157, 138-176 (2001) · Zbl 0985.30023
[16] Melas, A.; Nestoridis, V.; Papadoperakis, I., Growth of coefficients of universal Taylor series and comparison of two classes of functions, J. Anal. Math., 73, 187-202 (1997) · Zbl 0894.30003
[17] Müller, J.; Vlachou, V.; Yavrian, A., Universal overconvergence and Ostrowski-gaps, Bull. Lond. Math. Soc., 38, 597-606 (2006) · Zbl 1099.30001
[18] Nestoridis, V., Universal Taylor series, Ann. Inst. Fourier, 46, 1293-1306 (1996) · Zbl 0865.30001
[19] Nestoridis, V., An extension of the notion of universal Taylor series, (Computational Methods and Function Theory. Computational Methods and Function Theory, Nicosia, 1997. Computational Methods and Function Theory. Computational Methods and Function Theory, Nicosia, 1997, Ser. Approx. Decompos., vol. 11 (1999), World Sci. Publ.: World Sci. Publ. River Edge, NJ), 421-430 · Zbl 0942.30003
[20] Sjöberg, N., Sur les minorantes sousharmoniques dʼune fonction donnée, \((9^e\) Congr. des mathématiques scandinaves (1939)), 309-319 · Zbl 0022.23903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.