×

zbMATH — the first resource for mathematics

Band-level correlation noise modeling for Wyner-Ziv video coding with Gaussian mixture models. (English) Zbl 1358.94040
Summary: As one of the most adopted distributed video coding approaches in the literature, Wyner-Ziv (WZ) video coding is not yet on par with the motion-compensated predictive coding solutions with respect to rate-distortion (RD) performance. One of the essential reasons lies in the absence of reliable knowledge of the correlation statistics between source and side information. Most of the existing works assume a probability distribution of the statistical dependency to be Laplacian, which is not accurate but computationally cheap. In this paper, a correlation estimation based on Gaussian mixture model is proposed for the band-level correlation noise of discrete cosine transform domain Wyner-Ziv codec. The statistics of the correlation noise between WZ frame and corresponding side information is analyzed by considering the temporal correlation and quantization distortion. Accordingly, the model parameters for correlation noise are estimated offline and utilized online in consequent decoding. The simulation results of Kullback-Leibler divergence show that the proposed model has higher accuracy than the Laplacian one. Experimental results demonstrate that the WZ codec incorporated with the proposed model can achieve very competitive RD performance, especially for the sequence with high motion contents and large group of picture (GOP) size.
MSC:
94A12 Signal theory (characterization, reconstruction, filtering, etc.)
94A34 Rate-distortion theory in information and communication theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] A. Aaron, S. Rane, E. Setton, B. Girod, Transform-domain Wyner-Ziv codec for video, in Proceedings of SPIE Visual Communications and Image Processing, pp. 520-528, 2004
[2] Abou-Elailah, A; Dufaux, F; Farah, J; Cagnazzo, M; Pesquet-Popescu, B, Fusion of global and local motion estimation for distributed video coding, IEEE Trans. Circ. Syst. Video Technol., 23, 158-172, (2013)
[3] Akyildiz, F; Melodia, T; Chowdhury, KR, A survey on wireless multimedia sensor networks, Comput. Netw., 51, 921-960, (2007)
[4] Akyildiz, IF; Melodia, T; Chowdhury, KR, Wireless multimedia sensor networks: a survey, IEEE Wirel. Commun. Mag., 14, 32-39, (2007)
[5] Anastasi, G; Conti, M; Francesco, M; Passarella, A, Energy conservation in wireless sensor networks: a survey, Ad Hoc Netw., 7, 537-568, (2009)
[6] X. Artigas, J. Ascenso, M. Dalai, S. Klomp, D. Kubasov, M. Ouaret, The DISCOVER codec: architecture, techniques and evaluation, in Proceedings of Picture Coding Symposium, 2007
[7] J. Ascenso, C. Brites, O. Pereira, Content adaptive Wyner-Ziv video coding driven by motion activity, in IEEE International Conference on Image Processing, 2006 · Zbl 1372.94389
[8] Brites, C; Pereira, F, Correlation noise modeling for efficient pixel and transform domain Wyner-Ziv video coding, IEEE Trans. Circ. Syst. Video Technol., 18, 1117-1190, (2008)
[9] Brites, C; Ascenso, J; Quintas Pedro, J; Pereira, F, Evaluating a feedback channel based transform domain Wyner-Ziv video codec, Signal Process. Image Commun., 23, 269-297, (2008)
[10] H. Chen, E. Steinbach, Wyner-Ziv video coding based on turbo codes exploiting perfect knowledge of parity bits, in IEEE International Conference on Multimedia & Expo, ICME 2007, Beijing, China, 2007
[11] N. Deligiannis, A. Munteanu, T. Clerckx, J. Cornelis, P. Schelkens, Correlaiton channel estimation in pixel-domain distributed video coding, in Proceedings of 10th International Workshop on Image Analysis for Multimedia Interactive Services, 2009
[12] Deligiannis, N; Barbarien, J; Jacobs, M; Munteanu, A; Skodras, AN; Schelkens, P, Side-information-dependent correlation channel estimation in hash-based distributed video coding, IEEE Trans. Image Process., 21, 1934-1949, (2012) · Zbl 1373.94893
[13] Deligiannis, N; Munteanu, A; Wang, S; Cheng, S; Schelkens, P, Maximum likelihood Laplacian correlation channel estimation in layered Wyner-Ziv coding, IEEE Trans. Signal Process., 62, 892-904, (2014) · Zbl 1394.94866
[14] Esmaili, G; Cosman, P, Wyner-Ziv video coding with classified correlation noise estimation and key frame coding mode selection, IEEE Trans. Image Process., 20, 2463-2474, (2011) · Zbl 1372.94389
[15] Fan, X; Au, OC; Cheung, NM, Transform-domain adaptive correlation estimation (TRACE) for Wyner-Ziv video coding, IEEE Trans. Circ. Syst. Video Technol., 20, 1423-1436, (2010)
[16] Fang, S; Li, Z; Zhang, LW, Distributed video codec modeling correlation noise in wavelet coarsest subband, Electron. Lett., 43, 1266-1267, (2007)
[17] B. Girod, A. Aaron, S. Rane, D. Rebollo-Monedero, Distributed video coding. Proc. IEEE Spec. Issue Video Coding Deliv. 93(1), 71-83 (2005) · Zbl 1172.94476
[18] X. Huang, Improved virtual channel noise model for transform domain Wyner-Ziv video coding, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 921-924, 2009
[19] Huang, X; Forchhammer, S, Cross-band noise model refinement for transform domain Wyner-Ziv video coding, Signal Process. Image Commun., 27, 16-30, (2012)
[20] D. Kubasov, J. Nayak, C. Guillemot, Optimal reconstruction in Wyner-Ziv video coding with multiple side information, in Proceedings of the IEEE 9th Workshop on Multimedia Signal Processing, pp. 183-186, 2007 · Zbl 1372.94389
[21] Lam, EY; Goodman, JW, A mathematical analysis of the DCT coefficient distributions for images, IEEE Trans. Image Process., 9, 1661-1666, (2000) · Zbl 0976.68170
[22] Luong, HV; Raket, LL; Huang, X; Forchhammer, S, Side information and noise learning for distributed video coding using optical flow and clustering, IEEE Trans. Image Process., 21, 4782-4796, (2012) · Zbl 1373.94270
[23] T. Maugey, J. Gauthier, B. Pesquet-Popescu, C. Guillemot, Using an exponential power model for Wyner-Ziv video coding, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 2338-2341, 2010
[24] Yin, M; Cai, S; Xie, Y, Wyner-Ziv video coding based on Gaussian mixture model, Chin. J. Comput., 35, 173-182, (2012)
[25] S. Mys, J. Skorupa, P. Lambert, R. Van de Walle, C. Grecos, Accounting for quantization noise in online correlation noise estimation for distributed video coding, in Proceedings of Picture Coding Symposium, pp. 1-4, 2009 · Zbl 0976.68170
[26] Nadarajah, S, Gaussian DCT coefficient models, Acta Appl. Math., 106, 455-472, (2009) · Zbl 1173.33003
[27] Persson, D; Eriksson, T; Hedelin, P, Packet video error concealment with Gaussian mixture models, IEEE Trans. Image Process., 17, 145-154, (2008)
[28] Puri, R; Majumdar, A; Ishwar, P; Ramchandran, K, Distributed video coding in wireless sensor networks, IEEE Signal Process. Mag., 23, 94-106, (2006)
[29] Sanderson, C; Paliwal, KK, Fast features for face recognition under illumination direction changes, Pattern Recogn. Lett., 24, 2409-2419, (2003)
[30] Skorupa, J; Slowack, J; Mys, S; Deligiannis, N; Cock, JD; Lambert, P; Munteanu, A; Walle, RV, Exploiting quantization and spatial correlation in virtual-noise modeling for distributed video coding, Signal Process. Image Commun., 25, 674-686, (2010)
[31] J. Song, K. Wang, H. Liu, Y. Li, C. Wu, Progressive correlation noise refinement for transform domain Wyner-Ziv video coding, in IEEE International Conference on Image Processing, pp. 2625-2628, 2011
[32] Toto-Zarasoa, V; Roumy, A; Guillemot, C, Source modeling for distributed video coding, IEEE Trans. Circ. Syst. Video Technol., 22, 174-187, (2012)
[33] C.Y. Tsai, H.M. Hang, \(ρ \)-GGD source modeling for wavelet coefficients in image/video coding, in IEEE International Conference on Multimedia & Expo (ICME), pp. 601-604, 2008
[34] Van Hoang, X; Jeon, B, Flexible complexity control solution for transform domain Wyner-Ziv video coding, IEEE Trans. Broadcast., 58, 209-220, (2012)
[35] Verbeek, JJ; Vlassis, N; Kröse, B, Efficient greedy learning of Gaussian mixture models, Neural Comput., 15, 469-485, (2003) · Zbl 1047.68114
[36] Wang, S; Cui, L; Stankovic, L; Stankovic, V; Cheng, S, Adaptive correlation estimation with particle filtering for distributed video coding, IEEE Trans. Circ. Syst. Video Technol., 22, 649-658, (2012)
[37] R.P. Westerlaken, R.K. Gunnewiek, R.L. Lagendijk, The role of the virtual channel in distributed source coding of video. IEEE Int. Conf. Image Process. 1, 581-584 (2005)
[38] Xiong, Z; Liveris, AD; Cheng, S, Distributed source coding for sensor networks, IEEE Signal Process. Mag., 21, 80-94, (2004)
[39] Yang, Y; Cheng, S; Xiong, Z; Zhao, W, Wyner-Ziv coding based on TCQ and LDPC codes, IEEE Trans. Commun., 57, 376-387, (2009)
[40] G. Yazbek, C. Mokbel, G. Chollet, Video segmentation and compression using hierarchies of Gaussian mixture models, in IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. I-1009, 2007
[41] Ye, S; Ouaret, M; Dufaux, F; Ebrahimi, T, Improved side information generation for distributed video coding by exploiting spatial and temporal correlations, EURASIP J. Image Video Process., 1-15, 2009, (2009)
[42] Zhang, Y; Xiong, H; He, Z; Yu, S; Chen, CW, An error resilient video coding scheme using embedded Wyner-Ziv description with decoder side non-stationary distortion modeling, IEEE Trans. Circ. Syst. Video Technol., 21, 498-512, (2011)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.