×

High-resolution viscous flow simulations at arbitrary Mach number. (English) Zbl 1118.76338

Summary: A characteristic-based unsteady viscous flow solver is developed with preconditioning that is uniformly applicable for Mach numbers ranging from essentially incompressible to supersonic. A preconditioned flux-difference formulation for nondimensional primitive variables is a key element of the present approach. The simple primitive-variable numerical flux is related to Roe’s flux-difference scheme and preserves contact discontinuities using primitive variables, with or without preconditioning. Preconditioning by a single-parameter diagonal matrix conditions the system eigenvalues in terms of nondimensional local velocity and local temperature. An iterative implicit solution algorithm is given for the preconditioned formulation and is used for several simple test and validation cases. These include an inviscid shock-tube case, flat-plate boundary layer flow at low Mach number, viscous flow past a circular cylinder at low Reynolds number and with different thermal boundary conditions, and validation cases for incompressible and transonic flows.

MSC:

76M20 Finite difference methods applied to problems in fluid mechanics
76H05 Transonic flows
76D99 Incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Turkel, E., A review of preconditioning methods for fluid dynamics, Appl. Numer. Math., 12, 257-284 (1993) · Zbl 0770.76048
[2] Turkel, E., Preconditioning techniques in computational fluid dynamics, Annu. Rev. Fluid Mech., 31, 385-416 (1999)
[3] Briley, W. R.; McDonald, H.; Shamroth, S. J., A low Mach number Euler formulation and application to time iterative LBI schemes, AIAA J., 21, 10, 1467-1469 (1983)
[4] McDonald, H.; Briley, W. R., Three-dimensional supersonic flow of a viscous or inviscid gas, J. Comp. Phys., 19, 2, 150-178 (1975) · Zbl 0347.76044
[5] Steger, J. L.; Kutler, P., Implicit finite-difference procedures for the computation of vortex wakes, AIAA J., 15, 4, 581-590 (1977) · Zbl 0381.76030
[6] Choi, D.; Merkle, C. L., Application of time-iterative schemes to incompressible flow, AIAA J., 23, 10, 1518-1524 (1985) · Zbl 0571.76016
[7] Merkle, C. L.; Choi, D. L., Computation of low-speed flow with heat addition, AIAA J., 25, 6, 831-838 (1987)
[8] Viviand, H., Pseudo-unsteady systems for steady inviscid flow calculation, (Angrand, F.; etal., Numerical Methods for the Euler Equations of Fluid Dynamics (1985), SIAM: SIAM Philadelphia) · Zbl 0608.76051
[9] Turkel, E., Preconditioned methods for solving the incompressible and low-speed compressible equations, J. Comput. Phys., 72, 277-298 (1987) · Zbl 0633.76069
[10] Briley, W. R.; Buggeln, R. C.; McDonald, H., Solution of the incompressible Navier-Stokes equations using artificial compressibility, (Proceedings of the Eleventh International Conference on Numerical Methods in Fluid Mechanics (1989), Springer: Springer New York)
[11] Choi, Y. H.; Merkle, C. L., The application of preconditioning to viscous flows, J. Comput. Phys., 105, 207-223 (1993) · Zbl 0768.76032
[12] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 2050-2057 (1995) · Zbl 0849.76072
[13] Weiss, J. M.; Maruszewski, J. P.; Smith, W. A., Implicit solution of preconditioned Navier-Stokes equations using algebraic multigrid, AIAA J., 37, 29-36 (1999)
[14] R.H. Pletcher, K.-H. Chen, On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach number, AIAA Paper No. 93-3368-CP, 1993; R.H. Pletcher, K.-H. Chen, On solving the compressible Navier-Stokes equations for unsteady flows at very low Mach number, AIAA Paper No. 93-3368-CP, 1993
[15] Edwards, J. R.; Liou, M-S., Low-diffusion flux-splitting methods for flows at all speeds, AIAA J., 36, 9, 1610-1617 (1998)
[16] J.R. Edwards, J.L. Thomas, Development and investigation of \(O( Nm^2\); J.R. Edwards, J.L. Thomas, Development and investigation of \(O( Nm^2\)
[17] Roe, P. L., Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech., 18, 337-365 (1986), Annual Reviews · Zbl 0624.76093
[18] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics (1999), Springer: Springer Berlin · Zbl 0923.76004
[19] Roe, P. L., Approximate Riemann solvers, parameter vector, and difference schemes, J. Comput. Phys., 43, 357 (1981) · Zbl 0474.65066
[20] Liou, M.-S.; Steffan, C. J., A new flux splitting scheme, J. Comput. Phys., 107, 23 (1993) · Zbl 0779.76056
[21] Simpson, L. B.; Whitfield, D. L., Flux-difference split algorithm for unsteady thin-layer Navier-Stokes solutions, AIAA J., 30, 4, 914-922 (1992) · Zbl 0756.76054
[22] D.L. Whitfield, L.K. Taylor, Discretized Newton-relaxation solution of high-resolution flux-difference split schemes, AIAA Paper No. 91-1539, 1991; D.L. Whitfield, L.K. Taylor, Discretized Newton-relaxation solution of high-resolution flux-difference split schemes, AIAA Paper No. 91-1539, 1991
[23] L.K. Taylor, D.L. Whitfield, Unsteady three-dimensional incompressible Euler and Navier-Stokes solver for stationary and dynamic grids, AIAA Paper No. 91-1650, 1991; L.K. Taylor, D.L. Whitfield, Unsteady three-dimensional incompressible Euler and Navier-Stokes solver for stationary and dynamic grids, AIAA Paper No. 91-1650, 1991
[24] D.L. Whitfield, L.K. Taylor, Numerical solution of the two-dimensional time-dependent incompressible Euler equations, Mississippi State University Report No. MSSU-EIRS-ERC-93-14, 1994; D.L. Whitfield, L.K. Taylor, Numerical solution of the two-dimensional time-dependent incompressible Euler equations, Mississippi State University Report No. MSSU-EIRS-ERC-93-14, 1994
[25] S.R. Chakravarthy, Relaxation methods for unfactored implicit upwind schemes, AIAA Paper 84-0165, 1984; S.R. Chakravarthy, Relaxation methods for unfactored implicit upwind schemes, AIAA Paper 84-0165, 1984
[26] Rai, M. M., A relaxation approach to patched grid calculations with the Euler equations, J. Comp. Phys., 66, 99-131 (1986) · Zbl 0606.76080
[27] D. Pan, S. Chakravarthy, Unified formulation for incompressible flows, AIAA Paper 89-0122, 1989; D. Pan, S. Chakravarthy, Unified formulation for incompressible flows, AIAA Paper 89-0122, 1989
[28] Rogers, S. E.; Kwak, D., An upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations, AIAA J., 28, 2, 253-262 (1990) · Zbl 0693.76041
[29] L.K. Taylor, J.A. Busby, M.Y. Jiang, A. Arabshahi, K. Sreenivas, D.L. Whitfield, Time accurate incompressible Navier-Stokes simulation of the flapping foil experiment, in: Proceedings of the Sixth International Conference on Numerical Ship Hydrodynamics, Iowa City, IA, 1993; L.K. Taylor, J.A. Busby, M.Y. Jiang, A. Arabshahi, K. Sreenivas, D.L. Whitfield, Time accurate incompressible Navier-Stokes simulation of the flapping foil experiment, in: Proceedings of the Sixth International Conference on Numerical Ship Hydrodynamics, Iowa City, IA, 1993
[30] Pankajakshan, R.; Taylor, L. K.; Sheng, C.; Briley, W. R.; Whitfield, D. L., Scalable parallel implicit multigrid solution of unsteady incompressible flows, (Caughey, D. A.; Hafez, M. M., Frontiers of Computational Fluid Dynamics 2002 (2002), World Scientific, PTE LTD: World Scientific, PTE LTD Singapore) · Zbl 1024.76027
[31] Jameson, A.; Turkel, E., Implicit schemes and LU decompositions, Math. Comp., 37, 385 (1981) · Zbl 0533.65060
[32] E.K. Buratynski, D.A. Caughey, An implicit LU scheme for the Euler equations applied to arbitrary cascades, AIAA Paper 84-0167, 1984; E.K. Buratynski, D.A. Caughey, An implicit LU scheme for the Euler equations applied to arbitrary cascades, AIAA Paper 84-0167, 1984
[33] Jameson, A.; Yoon, S., Lower-upper implicit schemes with multiple grids for the Euler equations, AIAA J., 25, 7, 929-935 (1987)
[34] Yoon, S.; Jameson, A., Lower-upper symmetric Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA J., 26, 9, 1025-1026 (1988)
[35] Yoon, S.; Kwak, D., Three-dimensional incompressible Navier-Stokes solver using lower-upper symmetric Gauss-Seidel algorithm, AIAA J., 29, 6, 874-875 (1991)
[36] Briley, W. R.; McDonald, H., An overview and generalization of implicit Navier-Stokes algorithms and approximate factorization, Comput. Fluids, 30, 807-828 (2001) · Zbl 1056.76060
[37] Anderson, W. K.; Thomas, J. T.; van Leer, B., Comparison of finite volume flux vector splittings for the Euler equations, AIAA J., 24, 1453 (1986)
[38] A. Arabshahi, J.M. Janus, A multiblock compressible Navier-Stokes flow solver applied to complex launch vehicles, AIAA-99-3378, 1999; A. Arabshahi, J.M. Janus, A multiblock compressible Navier-Stokes flow solver applied to complex launch vehicles, AIAA-99-3378, 1999
[39] J.J. Quirk, A contribution to the great Riemann solver debate, NASA CR 191409, ICASE Report No. 92-64, 1992; J.J. Quirk, A contribution to the great Riemann solver debate, NASA CR 191409, ICASE Report No. 92-64, 1992
[40] Liou, M.-S., Mass flux schemes and connection to shock instability, J. Comp. Phys., 160, 623-648 (2000) · Zbl 0967.76062
[41] T.J. Coakley, Turbulence modeling methods for the compressible Navier-Stokes equations, AIAA Paper No. 83-1693, 1983; T.J. Coakley, Turbulence modeling methods for the compressible Navier-Stokes equations, AIAA Paper No. 83-1693, 1983
[42] T.J. Coakley, T. Hsieh, A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows, AIAA Paper No. 85-1125, 1985; T.J. Coakley, T. Hsieh, A comparison between implicit and hybrid methods for the calculation of steady and unsteady inlet flows, AIAA Paper No. 85-1125, 1985
[43] C. Sheng, L.K. Taylor, D.L. Whitfield, An efficient multigrid acceleration for solving the 3-D incompressible Navier-Stokes equations in generalized curvilinear coordinates, AIAA Paper No. 94-2335, 1994; C. Sheng, L.K. Taylor, D.L. Whitfield, An efficient multigrid acceleration for solving the 3-D incompressible Navier-Stokes equations in generalized curvilinear coordinates, AIAA Paper No. 94-2335, 1994
[44] R. Pankajakshan, L.K. Taylor, C. Sheng, M.J. Jiang, W.R. Briley, D.L. Whitfield, Parallel efficiency in implicit multiblock, multigrid simulations, with application to submarine maneuvering, AIAA Paper 2001-1093, 2001; R. Pankajakshan, L.K. Taylor, C. Sheng, M.J. Jiang, W.R. Briley, D.L. Whitfield, Parallel efficiency in implicit multiblock, multigrid simulations, with application to submarine maneuvering, AIAA Paper 2001-1093, 2001
[45] Grove, A. S.; Shair, F. H.; Peterson, E. E.; Acrivos, A., J. Fluid Mech., 19, 60 (1964)
[46] Fornberg, B., J. Fluid Mech., 98, 819 (1980)
[47] T.T. Huang, H.-L. Liu, N.C. Groves, T.J. Forlini, J.N. Blanton, S. Gowing, Measurement of flows over an axisymmetric body with various appendages, in: Nineteenth Symposium on Naval Hydrodynamics, Seoul, Korea, 1992; T.T. Huang, H.-L. Liu, N.C. Groves, T.J. Forlini, J.N. Blanton, S. Gowing, Measurement of flows over an axisymmetric body with various appendages, in: Nineteenth Symposium on Naval Hydrodynamics, Seoul, Korea, 1992
[48] P.J. Cook, M.A. McDonald, M.C.P. Firmin, Aerofoil RAE 2822 - Pressure distributions and boundary layer and wake measurements, AGARD-AR-138, 1979; P.J. Cook, M.A. McDonald, M.C.P. Firmin, Aerofoil RAE 2822 - Pressure distributions and boundary layer and wake measurements, AGARD-AR-138, 1979
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.