×

On image restoration from random sampling noisy frequency data with regularization. (English) Zbl 1472.68210

Summary: Consider the image restoration using random sampling noisy frequency data by total variation regularization. By exploring image sparsity property under wavelet expansion, we establish an optimization model with two regularizing terms specifying image sparsity and edge preservation on the restored image. The choice strategy for the regularizing parameters is rigorously set up together with corresponding error estimate on the restored image. The cost functional with data-fitting in the frequency domain is minimized using the Bregman iteration scheme. By deriving the gradient of the cost functional explicitly, the minimizer of the cost functional at each Bregman step is also generated by an inner iteration process with Tikhonov regularization, which is implemented stably and efficiently due to the special structure of the regularizing iterative matrix. Numerical tests are given to show the validity of the proposed scheme.

MSC:

68U10 Computing methodologies for image processing
65T50 Numerical methods for discrete and fast Fourier transforms
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

RecPF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhu YG, Liu XM. A fast method for ##img## ##img####img##\(L^1\)-##img## ##img####img##\(L^2\) modeling for MR image compressive sensing. J Inverse Ill-Posed Probl. 2015;23(3):211-218. doi: 10.1515/jiip-2013-0046 · Zbl 1317.65227 · doi:10.1515/jiip-2013-0046
[2] Wang XD, Feng X, Wang W, et al. Iterative reweighted total generalized variation based Poisson noise removal model. Appl Math Comput. 2013;223:264-277. · Zbl 1329.94016
[3] Aubert G, Aujol JF. A variational approach to removing multiplicative noise. SIAM J Appl Math. 2008;68(4):925-946. doi: 10.1137/060671814 · Zbl 1151.68713 · doi:10.1137/060671814
[4] Shi J, Osher S. A nonlinear inverse scale space method for a convex multiplicative noise model. SIAM J Imaging Sci. 2008;1(3):294-321. doi: 10.1137/070689954 · Zbl 1185.94018 · doi:10.1137/070689954
[5] Kuperman V. Magnetic resonance imaging. New York (NY): Academic Press; 2000.
[6] Donoho DL. Compressed sensing. IEEE Trans Inf Theory. 2006;52(4):1289-1306. doi: 10.1109/TIT.2006.871582 · Zbl 1288.94016 · doi:10.1109/TIT.2006.871582
[7] Candes EJ, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory. 2006;52(2):489-509. doi: 10.1109/TIT.2005.862083 · Zbl 1231.94017 · doi:10.1109/TIT.2005.862083
[8] Candes EJ, Romberg J. Sparsity and incoherence in compressive sampling. Inverse Probl. 2007;23(3):969-985. doi: 10.1088/0266-5611/23/3/008 · Zbl 1120.94005 · doi:10.1088/0266-5611/23/3/008
[9] Candes EJ. The restricted isometry property and its implications for compressed sensing. C R Math. 2008;346(9-10):589-592. doi: 10.1016/j.crma.2008.03.014 · Zbl 1153.94002 · doi:10.1016/j.crma.2008.03.014
[10] Ma TH, Lou YF, Huang TZ. Truncated ##img## ##img####img##\(l_{1 - 2}\) models for sparse recovery and rank minimization. SIAM J Imaging Sci. 2017;10(3):1346-1380. doi: 10.1137/16M1098929 · Zbl 1397.94021 · doi:10.1137/16M1098929
[11] Chartrand R. Exact reconstruction of sparse signals via nonconvex minimization. IEEE Signal Process Lett. 2007;14:707-710. doi: 10.1109/LSP.2007.898300 · doi:10.1109/LSP.2007.898300
[12] Chartrand R, Yin WT Iteratively reweighted algorithms for compressive sensing. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing; New York (NY): IEEE; 2008. p. 3869-3872.
[13] Nikolova M. Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. SIAM J Numer Anal. 2002;40(3):965-994. doi: 10.1137/S0036142901389165 · Zbl 1018.49025 · doi:10.1137/S0036142901389165
[14] Nikolova M. Efficient reconstruction of piecewise constant images using nonsmooth nonconvex minimization. SIAM J Imaging Sci. 2008;1(1):2-25. doi: 10.1137/070692285 · Zbl 1207.94017 · doi:10.1137/070692285
[15] Goldstein T, Osher S. The split Bregman method for ##img## ##img####img##\(l_1\)-regularized problems. SIAM J Imaging Sci. 2009;2(2):323-343. doi: 10.1137/080725891 · Zbl 1177.65088 · doi:10.1137/080725891
[16] Yang JF, Zhang Y, Yin WT. A fast alternating direction method for TV-L1-L2 signal reconstruction from partial Fourier data. IEEE J Sel Top Signal Process. 2010;4(2):288-297. doi: 10.1109/JSTSP.2010.2042333 · doi:10.1109/JSTSP.2010.2042333
[17] Fan YR, Huang TZ, Liu J, et al. Compressive sensing via nonlocal smoothed rank function. PLoS ONE. 2016;11(9):e0162041. doi: 10.1371/journal.pone.0162041 · doi:10.1371/journal.pone.0162041
[18] Rudin LI, Osher S, Fatemi E. Nonlinear total variation-based noise removal algorithms. Physica D. 1992;60(1-4):259-268. doi: 10.1016/0167-2789(92)90242-F · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[19] Hintermüller M, Wu T. Nonconvex \(TV^{}q\)-models in image restoration: analysis and a trust-region regularization-based superlinearly convergent solver. SIAM J Imaging Sci. 2013;6(3):1385-1415. doi: 10.1137/110854746 · Zbl 1281.65033 · doi:10.1137/110854746
[20] Chan TF, Golub GH, Mulet P. A nonlinear primal-dual method for total variation-based image restoration. SIAM J Sci Comput. 1999;20(6):1964-1977. doi: 10.1137/S1064827596299767 · Zbl 0929.68118 · doi:10.1137/S1064827596299767
[21] Hintermüller M, Stadler G. A semi-smooth Newton method for constrained linear-quadratic control problems. Z Angew Math Mech. 2003;83(4):219-237. doi: 10.1002/zamm.200310030 · Zbl 1015.49025 · doi:10.1002/zamm.200310030
[22] Hintermüller M, Kunisch K. Total bounded variation regularization as a bilaterally constrained optimization problem. SIAM J Appl Math. 2004;64(4):1311-1333. doi: 10.1137/S0036139903422784 · Zbl 1055.94504 · doi:10.1137/S0036139903422784
[23] Hintermüller M, Stadler G. An infeasible primal-dual algorithm for total bounded variation-based inf-convolution-type image restoration. SIAM J Sci Comput. 2006;28(1):1-23. doi: 10.1137/040613263 · Zbl 1136.94302 · doi:10.1137/040613263
[24] Aubert G, Kornprobst P. Mathematical problems in image processing. New York (NY): Springer; 2000. · Zbl 1109.35002
[25] Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med. 2007;58(6):1182-1195. doi: 10.1002/mrm.21391 · doi:10.1002/mrm.21391
[26] Hintermüller M, Rincon-Camacho MM. Expected absolute value estimators for a spatially adapted regularization parameter choice rule in ##img## ##img####img##\(L^1\)-TV-based image restoration. Inverse Probl. 2010;26(8):085005. doi: 10.1088/0266-5611/26/8/085005 · Zbl 1194.94031 · doi:10.1088/0266-5611/26/8/085005
[27] Guo XX, Li F, Ng MK. A fast ##img## ##img####img##\(l_1\)-TV algorithm for image restoration. SIAM J Sci Comput. 2009;31(3):2322-2341. doi: 10.1137/080724435 · Zbl 1191.65029 · doi:10.1137/080724435
[28] Clason C, Jin BT, Kunisch K. A duality-based splitting method for ##img## ##img####img##\(l^1\)-TV image restoration with automatic regularization parameter choice. SIAM J Sci Comput. 2010;32(3):1484-1505. doi: 10.1137/090768217 · Zbl 1216.94009 · doi:10.1137/090768217
[29] Tibshirani R. Regression shrinkage and selection via the Lasso. J R Stat Soc Ser B. 1996;58(1):267-288. · Zbl 0850.62538 · doi:10.1111/j.2517-6161.1996.tb02080.x
[30] Yin WT, Osher S, Goldfarb D, et al. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J Imaging Sci. 2008;1(1):143-168. doi: 10.1137/070703983 · Zbl 1203.90153 · doi:10.1137/070703983
[31] Zhu YG, Shi YY. Weighted-average alternating minimization method for magnetic resonance image reconstruction based on compressive sensing. Inverse Probl Imaging. 2014;8(3):925-937. doi: 10.3934/ipi.2014.8.925 · Zbl 1302.65240 · doi:10.3934/ipi.2014.8.925
[32] Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration. Multiscale Model Simul. 2005;4(2):460-489. doi: 10.1137/040605412 · Zbl 1090.94003 · doi:10.1137/040605412
[33] Wang LY, Liu JJ. Total variation regularization for a backward time-fractional diffusion problem. Inverse Probl. 2013;29(11):115013. doi: 10.1088/0266-5611/29/11/115013 · Zbl 1297.65116 · doi:10.1088/0266-5611/29/11/115013
[34] Baus F, Nikolova M, Steidl G. Fully smoothed ##img## ##img####img##\(l_1\)-TV models: bounds for the minimizers and parameter choice. J Math Imaging Vis. 2014;48(2):295-307. doi: 10.1007/s10851-013-0420-0 · Zbl 1292.49036 · doi:10.1007/s10851-013-0420-0
[35] Bertalmio M, Caselles V, Rouge B, et al. TV based image restoration with local constraints. SIAM J Sci Comput. 2003;19(1-3):95-122. doi: 10.1023/A:1025391506181 · Zbl 1034.49036 · doi:10.1023/A:1025391506181
[36] Yin PH, Lou YF, He Q, et al. Minimization of ##img## ##img####img##\(l_{1 - 2}\) for compressed sensing. SIAM J Sci Comput. 2015;37(1):A536-A563. doi: 10.1137/140952363 · Zbl 1316.90037 · doi:10.1137/140952363
[37] Xu Z, Chang F, Xu F, et al. ##img## ##img####img##\(L_{1 / 2}\) regularization: a thresholding representation theory and a fast solver. IEEE Trans Neural Netw Learn Syst. 2012;23(7):1013-1027. doi: 10.1109/TNNLS.2012.2197412 · doi:10.1109/TNNLS.2012.2197412
[38] Huber PJ. Robust estimation of a location parameter. Ann Math Stat. 1964;35(1):73-101. doi: 10.1214/aoms/1177703732 · Zbl 0136.39805 · doi:10.1214/aoms/1177703732
[39] Kalmoun M. An investigation of smooth TV-like regularization in the context of the optical flow problem. J Imaging. 2018;31(4):4020031.
[40] Vogel CR. Computational methods for inverse problems. Philadelphia: SIAM; 2002. · Zbl 1008.65103
[41] Mallat S. A wavelet tour of signal processing. 3rd ed. San Diego (CA): Academic Press; 2008. · Zbl 0937.94001
[42] Wang YL, Yang JF, Yin WT, et al. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci. 2008;1(3):248-272. doi: 10.1137/080724265 · Zbl 1187.68665 · doi:10.1137/080724265
[43] Ng M, Chan R, Tang W. A fast algorithm for deblurring models with Neumann boundary conditions. SIAM J Sci Comput. 1999;21(3):851-866. doi: 10.1137/S1064827598341384 · Zbl 0951.65038 · doi:10.1137/S1064827598341384
[44] Liu XM, Zhu YG. A fast method for TV-L1-MRI image reconstruction in compressive sensing. J Comput Inf Syst. 2014;10(2):691-699.
[45] Vogel CR, Oman ME. Iterative methods for total variation denoising. SIAM J Sci Comput. 1996;17(1):227-238. doi: 10.1137/0917016 · Zbl 0847.65083 · doi:10.1137/0917016
[46] Zhang X, Burger M, Osher S. A unified primal-dual algorithm framework based on Bregman iteration. SIAM J Sci Comput. 2011;46(1):20-46. doi: 10.1007/s10915-010-9408-8 · Zbl 1227.65052 · doi:10.1007/s10915-010-9408-8
[47] Esser E, Zhang X, Chan T. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science. SIAM J Imaging Sci. 2010;3(4):1015-1046. doi: 10.1137/09076934X · Zbl 1206.90117 · doi:10.1137/09076934X
[48] Varga RS. Matrix iterative analysis. Berlin: Springer; 2000. · Zbl 1216.65042 · doi:10.1007/978-3-642-05156-2
[49] Igor G, Stephen GN, Ariela S. Linear and nonlinear optimization. 2nd ed. Philadelphia: SIAM; 2008. · Zbl 1159.90002
[50] Sun W, Sampaio RJB, Yuan J. Quasi-Newton trust region algorithm for non-smooth least squares problems. Appl Math Comput. 1999;105:183-194. · Zbl 1026.90066 · doi:10.1016/S0096-3003(98)10103-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.