×

Existence and convergence analysis of \(\ell_{0}\) and \(\ell_{2}\) regularizations for limited-angle CT reconstruction. (English) Zbl 1395.90246

Summary: In some practical applications of computed tomography (CT) imaging, the projections of an object are obtained within a limited-angle range due to the restriction of the scanning environment. In this situation, conventional analytic algorithms, such as filtered backprojection (FBP), will not work because the projections are incomplete. An image reconstruction algorithm based on total variation minimization (TVM) can significantly reduce streak artifacts in sparse-view reconstruction, but it will not effectively suppress slope artifacts when dealing with limited-angle reconstruction problems. To solve this problem, we consider a family of image reconstruction model based on \(\ell_{0}\) and \(\ell_{2}\) regularizations for limited-angle CT and prove the existence of a solution for two CT reconstruction models. The Alternating Direction Method of Multipliers (ADMM)-like method is utilized to solve our model. Furthermore, we prove the convergence of our algorithm under certain conditions. Some numerical experiments are used to evaluate the performance of our algorithm and the results indicate that our algorithm has advantage in suppressing slope artifacts.

MSC:

90C90 Applications of mathematical programming
15A29 Inverse problems in linear algebra
44A12 Radon transform
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. A. Anastasio; E. Y. Sidky; X. Pan; C. Y. Chou, Boundary reconstruction in limited-angle x-ray phase-contrast tomography, Medical Imaging 2009: Physics of Medical Imaging, 7258, 725827 (2009) · doi:10.1117/12.811918
[2] A. H. Andersen; A. C. Kak, Simultaneous algebraic reconstruction technique (SART): A superior implementation of the ART algorithm, Ultrasonic Imaging, 6, 81-94 (1984) · doi:10.1016/0161-7346(84)90008-7
[3] A. Auslender and M. Teboulle, Asymptotic cones and functions in optimization and variational inequalities, Springer, Berlin, 2006. · Zbl 1017.49001
[4] G. Bachar; J. H. Siewerdsen; M. J. Daly; D. A. Jaffray; J. C. Irish, Image quality and localization accuracy in C-arm tomosynthesis-guided head and neck surgery, Medical Physics, 34, 4664-4677 (2007) · doi:10.1118/1.2799492
[5] T. Blumensath, Accelerated iterative hard thresholding, Signal Processing, 92, 752-756 (2012) · doi:10.1016/j.sigpro.2011.09.017
[6] T. Blumensath; M. E. Davies, Iterative thresholding for sparse approximations, Journal of Fourier Analysis and Applications, 14, 629-654 (2008) · Zbl 1175.94060 · doi:10.1007/s00041-008-9035-z
[7] T. Blumensath; M. E. Davies, Iterative hard thresholding for compressed sensing, Applied and Computational Harmonic Analysis, 27, 265-274 (2009) · Zbl 1174.94008 · doi:10.1016/j.acha.2009.04.002
[8] J. Bolte; S. Sabach; M. Teboulle, Proximal alternating linearized minimization for nonconvex and nonsmooth problems, Mathematical Programming, 146, 459-494 (2014) · Zbl 1297.90125 · doi:10.1007/s10107-013-0701-9
[9] K. Bredies; D. A. Lorenz; S. Reiterer, Minimization of non-smooth, non-convex functionals by iterative thresholding, Journal of Optimization Theory and Applications, 165, 78-112 (2015) · Zbl 1321.49048 · doi:10.1007/s10957-014-0614-7
[10] M. Burger, J. Müller, E. Papoutsellis and C. B. Schonlieb, Total variation regularization in measurement and image space for PET reconstruction, Inverse Problems, 30 (2014), 105003. · Zbl 1308.65214
[11] T. M. Buzug, Computed tomography: From photon statistics to modern cone-beam CT, Springer Handbook of Medical Technology, 311-342 (2008) · doi:10.1007/978-3-540-74658-4_16
[12] J. F. Cai; S. Osher; Z. Shen, Split Bregman methods and frame based image restoration, Multiscale Modeling & Simulation, 8, 337-369 (2009) · Zbl 1189.94014
[13] Y. Censor; A. Segal, Iterative projection methods in biomedical inverse problems, Mathematical Methods in Biomedical Imaging and Intensity-Modulated Radiation Therapy (IMRT), 10, 65-96 (2008)
[14] C. Chen; R. H. Chan; S. Ma; J. Yang, Inertial proximal ADMM for linearly constrained separable convex optimization, SIAM Journal on Imaging Sciences, 8, 2239-2267 (2015) · Zbl 1328.65134
[15] Z. Q. Chen; X. Jin; L. Li; G. Wang, A limited-angle CT reconstruction method based on anisotropic TV minimization, Physics in Medicine and Biology, 58, 2119-2141 (2013) · doi:10.1088/0031-9155/58/7/2119
[16] M. K. Cho; H. K. Kim; H. Youn; S. S. Kim, A feasibility study of digital tomosynthesis for volumetric dental imaging, J. Instrum., 7, 1-6 (2012) · doi:10.1088/1748-0221/7/03/P03007
[17] I. Daubechies; M. Defrise; M. C. De, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Communications on Pure and Applied Mathematics, 57, 1413-1457 (2004) · Zbl 1077.65055 · doi:10.1002/cpa.20042
[18] I. Daubechies, Ten Lectures on Wavelets, 1nd edition, Society for industrial and applied mathematics, Philadelphia, 1992. · Zbl 0776.42018
[19] I. Daubechies; B. Han; A. Ron; Z. Shen, Framelets: MRA-based constructions of wavelet frames, Applied and Computational Harmonic Analysis, 14, 1-46 (2003) · Zbl 1035.42031 · doi:10.1016/S1063-5203(02)00511-0
[20] B. Dong; Y. Zhang, An efficient algorithm for \(\begin{document} \ell_0 \end{document}\) minimization in wavelet frame based image restoration, Journal of Scientific Computing, 54, 350-368 (2013) · Zbl 1288.94010 · doi:10.1007/s10915-012-9597-4
[21] M. Elad; J. L. Starck; P. Querre; D. L. Donoho, Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA), Applied and Computational Harmonic Analysis, 19, 340-358 (2005) · Zbl 1081.68732 · doi:10.1016/j.acha.2005.03.005
[22] M. Filipović and A. Jukić, Restoration of images corrupted by mixed Gaussian-impulse noise by iterative soft-hard thresholding, In Signal Processing Conference (EUSIPCO), 2014 Proceedings of the 22nd European, (2014), 1637-1641.
[23] J. Frikel and E. T. Quinto, Characterization and reduction of artifacts in limited angle tomography, Inverse Problems, 29(2013), 125007. · Zbl 1284.92044
[24] H. Gao; J. F. Cai; Z. W. Shen; H. Zhao, Robust principal component analysis-based four-dimensional computed tomography, Physics in Medicine and Biology, 56, 3781-3798 (2011) · doi:10.1088/0031-9155/56/11/002
[25] H. Gao; R. Li; Y. Lin; L. Xing, 4D cone beam CT via spatiotemporal tensor framelet, Medical Physics, 39, 6943-6946 (2012) · doi:10.1118/1.4762288
[26] H. Gao; H. Y. Yu; S. Osher; G. Wang, Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM), Inverse Problems, 27, 1-22 (2011) · Zbl 1230.92024 · doi:10.1088/0266-5611/27/11/115012
[27] H. Gao; L. Zhang; Z. Chen; Y. Xing; J. Cheng; Z. Qi, Direct filtered-backprojection-type reconstruction from a straight-line trajectory, Optical Engineering, 46, 057003-057003 (2007)
[28] T. Goldstein; S. Osher, The split Bregman method for \(\begin{document} \ell_1 \end{document}\) regularized problems, SIAM Journal on Imaging Sciences, 2, 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[29] R. Gordon, A tutorial on ART (algebraic reconstruction techniques), IEEE Transactions on Nuclear Science, 21, 78-93 (1974) · doi:10.1109/TNS.1974.6499238
[30] B. Han, On dual wavelet tight frames, Applied and Computational Harmonic Analysis, 4, 380-413 (1997) · Zbl 0880.42017 · doi:10.1006/acha.1997.0217
[31] X. Han, J. Bian, E. L. Ritman, E. Y. Sidky and X. Pan, Optimization-based reconstruRit-manction of sparse images from few-view projections, Physics in Medicine and Biology, 57 (2012), p5245.
[32] B. S. He, A class of projection and contraction methods for monotone variational inequalities, Applied Mathematics and Optimization, 35, 69-76 (1997) · Zbl 0865.90119 · doi:10.1007/BF02683320
[33] B. S. He; M. H. Xu, A general framework of contraction methods for monotone variational inequalities, Pacific Journal of Optimization, 4, 195-212 (2008) · Zbl 1190.90120
[34] K. Ito; K. Kunisch, A note on the existence of nonsmooth nonconvex optimization problems, Journal of Optimization Theory and Applications, 163, 697-706 (2014) · Zbl 1307.49007 · doi:10.1007/s10957-014-0552-4
[35] X. Jia; B. Dong; Y. Lou; S. B. jiang, GPU-based iterative cone-beam CT reconstruction using tight frame regularization, Physics in Medicine and Biology, 56, 3787-3806 (2010) · doi:10.1088/0031-9155/56/13/004
[36] M. Jiang; G. Wang, Development of iterative algorithms for image reconstruction, Journal of X-ray Science and Technology, 10, 77-86 (2001)
[37] M. Jiang; G. Wang, Convergence of the simultaneous algebraic reconstruction technique (SART), IEEE Transactions on Image Processing, 12, 957-961 (2003) · Zbl 1279.94022 · doi:10.1109/TIP.2003.815295
[38] A. C. Kak and M. Slaney, Principles of Computerized Tomographic Imaging, Medical physics, IEEE Press, New York, 1988. · Zbl 0721.92011
[39] V. Kolehmainen; S. Siltanen; S. Järvenpää; J. P. Kaipio; P. Koistinenand; M. Lassas; J. Pirttilä; E. Somersalo, Statistical inversion for medical x-ray tomography with few radiographs: Ⅱ. Application to dental radiology, Physics in Medicine and Biology, 48, 1465-1490 (2003) · doi:10.1088/0031-9155/48/10/315
[40] H. Kudo; F. Noo; M. Defrise; R. Clackdoyle, New super-short-scan algorithms for fan-beam and cone-beam reconstruction, Nuclear Science Symposium Conference Record, 2002 IEEE, 2, 902-906 (2002) · doi:10.1109/NSSMIC.2002.1239470
[41] S. J. LaRoque; E. Y. Sidky; X. Pan, Accurate image reconstruction from few-view and limited-angle data in diffraction tomography, JOSA A, 25, 1772-1782 (2008) · doi:10.1364/JOSAA.25.001772
[42] X. Lu; Y. Sun; Y. Yuan, Image reconstruction by an alternating minimisation, Neurocomputing, 74, 661-670 (2011) · doi:10.1016/j.neucom.2010.08.003
[43] X. Lu; Y. Sun; Y. Yuan, Optimization for limited angle tomography in medical image processing, Pattern Recognition, 44, 2427-2435 (2011) · Zbl 1218.92052 · doi:10.1016/j.patcog.2010.12.016
[44] F. Noo; D. J. Heuscher, Image reconstruction from cone-beam data on a circular short-scan, Medical Imaging 2002: Image Processing, 4684, 50-59 (2002) · doi:10.1117/12.467199
[45] F. Noo; M. Defrise; R. Clackdoyle; H. Kudo, Image reconstruction from fan-beam projections on less than a short scan, Physics in Medicine and Biology, 47, 2525-2546 (2002) · doi:10.1088/0031-9155/47/14/311
[46] X. Pan, E. Y. Sidky and M. Vannier, Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?, Inverse Problems, 25 (2009), 123009. · Zbl 1185.68811
[47] C. Ravazzi; S. M. Fosson; E. Magli, Distributed iterative thresholding for L0/L1-regularized linear inverse problems, IEEE Transactions on Information Theory, 61, 2081-2100 (2015) · Zbl 1359.94161 · doi:10.1109/TIT.2015.2403263
[48] R. T. Rockafellarr and R. J. B. Wets, Variational Analysis, 1nd edition, Springer, Berlin, 2009.
[49] A. Ron; Z. Shen, Affine systems in \(\begin{document} L_2(R^d) \end{document}\) Ⅱ: Dual systems, Journal of Fourier Analysis and Applications, 3, 617-637 (1997) · Zbl 0904.42025 · doi:10.1007/BF02648888
[50] W. P. Segars; D. S. Lalush; B. M. W. Tsui, A realistic spline-based dynamic heart phantom, IEEE Transactions on Nuclear Science, 46, 503-506 (1999) · doi:10.1109/NSSMIC.1998.774369
[51] M. M. Seger; P. E. Danielsson, Scanning of logs with linear cone-beam tomography, Computers and Electronics in Agriculture, 41, 45-62 (2003) · doi:10.1016/S0168-1699(03)00041-3
[52] R. L. Siddon, Fast calculation of the exact radiological path for a three-dimensional CT array, Medical Physics, 12, 252-255 (1985) · doi:10.1118/1.595715
[53] E. Y. Sidky and X. Pan, Accurate image reconstruction in circular cone-beam computed tomography by total variation minimization: a preliminary investigation, In Nuclear Science Symposium Conference Record, 5 (2006), 2904-2907.
[54] E. Y. Sidky and X. C. Pan, Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization, Physics in Medicine and Biology, 53 (2008), 4777.
[55] E. Soubies; L. Blanc-Féraud; G. Aubert, A Continuous Exact \(\begin{document} \ell_0 \end{document}\) Penalty (CEL0) for Least Squares Regularized Problem, SIAM Journal on Imaging Sciences, 8, 1607-1639 (2015) · Zbl 1325.65086 · doi:10.1137/151003714
[56] C. Soussen; J. Idier; J. Duan; D. Brie, Homotopy Based Algorithms for-Regularized Least-Squares, IEEE Transactions on Signal Processing, 63, 3301-3316 (2015) · Zbl 1394.94555 · doi:10.1109/TSP.2015.2421476
[57] J. L. Starck; M. Elad; D. L. Donoho, Image decomposition via the combination of sparse representations and a variational approach, IEEE Transactions on Image Processing, 14, 1570-1582 (2005) · Zbl 1288.94012 · doi:10.1109/TIP.2005.852206
[58] M. Storath, A. Weinmann, J. Frikel and M. Unser, Joint image reconstruction and segmentation using the Potts model, Inverse Problems, 31 (2015), 025003. · Zbl 1342.94029
[59] A. Tingberg, X-ray tomosynthesis: a review of its use for breast and chest imaging, Radiation Protection Dosimetry, 139, 100-107 (2010) · doi:10.1093/rpd/ncq099
[60] C. Wang; L. Zeng, Error bounds and stability in the \(\begin{document} \ell_0 \end{document}\) regularized for CT reconstruction from small projections, Inverse Problems and Imaging, 10, 829-853 (2016) · Zbl 1348.90671 · doi:10.3934/ipi.2016023
[61] Z. Wang; A. C. Bovik; H. R. Sheikh; E. P. Simoncelli, Image quality assessment: from error visibility to structural similarity, IEEE Transactions on Image Processing, 13, 600-612 (2004) · doi:10.1109/TIP.2003.819861
[62] Y. Xiao; T. Zeng; J. Yu; M. K. Ng, Restoration of images corrupted by mixed Gaussian-impulse noise via l1-l0 minimization, Pattern Recognition, 44, 1708-1720 (2011) · Zbl 1218.68191
[63] G. L. Zeng, Medical Image Reconstruction, 1nd edition, Springer-Verlag, Berlin Heidelberg, 2010.
[64] L. Zeng; J. Q. Guo; B. D. Liu, Limited-angle cone-beam computed tomography image reconstruction by total variation minimization and piecewise-constant modification, Journal of Inverse and Ill-Posed Problems, 21, 735-754 (2013) · Zbl 1293.92012 · doi:10.1515/jip-2011-0010
[65] Y. Zhang; B. Dong; Z. S. Lu, \( \begin{document} \ell_0 \end{document}\) Minimization for wavelet frame based image restoration, Mathematics of Computation, 82, 995-1015 (2013) · Zbl 1277.80022 · doi:10.1090/S0025-5718-2012-02631-7
[66] B. Zhao, H. Gao, H. Ding and S. Molloi, Tight-frame based iterative image reconstruction for spectral breast CT, Medical Physics, 40 (2013), 031905.
[67] W. Zhou; J. F. Cai; H. Gao, Adaptive tight frame based medical image reconstruction: A proof-of-concept study for computed tomography, Inverse problems, 29, 1-18 (2013) · Zbl 1284.92048 · doi:10.1088/0266-5611/29/12/125006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.