×

zbMATH — the first resource for mathematics

Nonnegatively curved 5-manifolds with almost maximal symmetry rank. (English) Zbl 1294.53038
Summary: We show that a closed, simply connected, nonnegatively curved 5-manifold admitting an effective, isometric \(T^2\) action is diffeomorphic to one of \(S^5\), \(S^3 \times S^2\), \(S^3\tilde{\times} S^2\) or the Wu manifold \(\mathrm {SU}(3)/\mathrm{SO}(3)\).
Reviewer: Reviewer (Berlin)

MSC:
53C20 Global Riemannian geometry, including pinching
57S25 Groups acting on specific manifolds
51M25 Length, area and volume in real or complex geometry
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] D Barden, Simply connected \(5\)-manifolds, Ann. of Math. 82 (1965) 365 · Zbl 0136.20602 · doi:10.2307/1970702
[2] G E Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics 46, Academic Press (1972) · Zbl 0246.57017
[3] D Burago, Y Burago, S Ivanov, A course in metric geometry, Graduate Studies in Mathematics 33, Amer. Math. Soc. (2001) · Zbl 0981.51016
[4] Y Burago, M Gromov, G Perelman, AD Aleksandrov’s spaces with curvatures bounded below, Uspekhi Mat. Nauk 47 (1992) 3, 222 · Zbl 0802.53018 · doi:10.1070/RM1992v047n02ABEH000877
[5] T Chang, T Skjelbred, Group actions on Poincaré duality spaces, Bull. Amer. Math. Soc. 78 (1972) 1024 · Zbl 0261.57007 · doi:10.1090/S0002-9904-1972-13092-1
[6] J Cheeger, D G Ebin, Comparison theorems in Riemannian geometry, AMS Chelsea Publishing (2008) · Zbl 1142.53003
[7] J DeVito, The classification of simply connected biquotients of dimension at most \(7\) and \(3\) new examples of almost positively curved manifolds, PhD thesis, University of Pennsylvania (2011) · search.proquest.com
[8] R Diestel, Graph theory, Graduate Texts in Mathematics 173, Springer (2005) · Zbl 1074.05001
[9] J Dinkelbach, B Leeb, Equivariant Ricci flow with surgery and applications to finite group actions on geometric \(3\)-manifolds, Geom. Topol. 13 (2009) 1129 · Zbl 1181.57023 · doi:10.2140/gt.2009.13.1129
[10] H Duan, C Liang, Circle bundles over \(4\)-manifolds, Arch. Math. (Basel) 85 (2005) 278 · Zbl 1078.57020 · doi:10.1007/s00013-005-1214-4
[11] R Fintushel, Circle actions on simply connected \(4\)-manifolds, Trans. Amer. Math. Soc. 230 (1977) 147 · Zbl 0362.57014 · doi:10.2307/1997715
[12] R Fintushel, Classification of circle actions on \(4\)-manifolds, Trans. Amer. Math. Soc. 242 (1978) 377 · Zbl 0362.57015 · doi:10.2307/1997745
[13] F Galaz-Garcia, Nonnegatively curved fixed point homogeneous manifolds in low dimensions, Geom. Dedicata 157 (2012) 367 · Zbl 1254.53059 · doi:10.1007/s10711-011-9615-y
[14] F Galaz-Garcia, M Kerin, Cohomogeneity-two torus actions on nonnegatively curved manifolds of low dimension, Math. Z. 276 (2014) 133 · Zbl 1296.53066 · doi:10.1007/s00209-013-1190-5
[15] F Galaz-Garcia, C Searle, Low-dimensional manifolds with nonnegative curvature and maximal symmetry rank, Proc. Amer. Math. Soc. 139 (2011) 2559 · Zbl 1220.53044 · doi:10.1090/S0002-9939-2010-10655-X
[16] F Galaz-Garcia, W Spindeler, Nonnegatively curved fixed point homogeneous \(5\)-manifolds, Ann. Global Anal. Geom. 41 (2012) 253 · Zbl 1239.53046 · doi:10.1007/s10455-011-9282-0
[17] F Galaz-Garcia, W Spindeler, Erratum to: Nonnegatively curved fixed point homogeneous \(5\)-manifolds, Ann. Global Anal. Geom. 45 (2014) 151 · Zbl 1290.53045 · doi:10.1007/s10455-013-9402-0
[18] J C Gómez-Larrañaga, F González-Acuña, W Heil, \(S^2\)- and \(P^2\)-category of manifolds, Topology Appl. 159 (2012) 1052 · Zbl 1244.57037 · doi:10.1016/j.topol.2011.11.011
[19] J L Gross, J Yellen, editors, Handbook of graph theory, CRC Press (2004) · Zbl 1036.05001 · doi:10.1201/9780203490204
[20] K Grove, Geometry of, and via, symmetries, Univ. Lecture Ser. 27, Amer. Math. Soc. (2002) 31
[21] K Grove, Developments around positive sectional curvature (editors H D Cao, S T Yau), Surv. Differ. Geom. 13, Int. Press (2009) 117 · Zbl 1179.53001
[22] K Grove, C Searle, Positively curved manifolds with maximal symmetry rank, J. Pure Appl. Algebra 91 (1994) 137 · Zbl 0793.53040 · doi:10.1016/0022-4049(94)90138-4
[23] K Grove, C Searle, Differential topological restrictions curvature and symmetry, J. Differential Geom. 47 (1997) 530 · Zbl 0929.53017 · euclid:jdg/1214460549
[24] K Grove, B Wilking, A knot characterization and \(1\)-connected nonnegatively curved \(4\)-manifolds with circle symmetry, · Zbl 1317.53062 · doi:10.2140/gt.2014.18.3091
[25] B A Kleiner, Riemannian four-manifolds with nonnegative curvature and continuous symmetry, PhD thesis, University of California, Berkeley (1990) · search.proquest.com
[26] D Montgomery, C T Yang, Groups on \(S^n\) with principal orbits of dimension \(n-3\), Illinois J. Math. 4 (1960) 507 · Zbl 0094.24903
[27] P S Mostert, On a compact Lie group acting on a manifold, Ann. of Math. 65 (1957) 447 · Zbl 0080.16702 · doi:10.2307/1970056
[28] W D Neumann, \(3\)-dimensional \(G\)-manifolds with \(2\)-dimensional orbits, Springer (1968) 220 · Zbl 0177.52101
[29] P Orlik, Seifert manifolds, Lecture Notes in Math. 291, Springer (1972) · Zbl 0263.57001
[30] P Orlik, F Raymond, Actions of \(\mathrm{SO}(2)\) on \(3\)-manifolds, Springer (1968) 297 · Zbl 0172.25402
[31] P S Pao, Nonlinear circle actions on the \(4\)-sphere and twisting spun knots, Topology 17 (1978) 291 · Zbl 0403.57006 · doi:10.1016/0040-9383(78)90033-2
[32] G P Paternain, J Petean, Minimal entropy and collapsing with curvature bounded from below, Invent. Math. 151 (2003) 415 · Zbl 1049.53029 · doi:10.1007/s00222-002-0262-7
[33] A V Pavlov, Five-dimensional biquotients of Lie groups, Sibirsk. Mat. Zh. 45 (2004) 1323 · Zbl 1095.57025 · doi:10.1023/B:SIMJ.0000048923.81718.a5 · emis:journals/SMZ/2004/06/1323.htm · eudml:52655
[34] G Perelman, The entropy formula for the Ricci flow and its geometric applications, · Zbl 1130.53001 · arxiv:math.DG/0211159
[35] G Perelman, Finite extinction time for the solutions to the Ricci flow on certain three-manifolds, · Zbl 1130.53003 · arxiv:math.DG/0307245
[36] G Perelman, Ricci flow with surgery on three-manifolds, · Zbl 1130.53002 · arxiv:math.DG/0303109
[37] G Perelman, Alexandrov’s spaces with curvatures bounded from below, II, preprint (1991)
[38] F Raymond, Classification of the actions of the circle on \(3\)-manifolds, Trans. Amer. Math. Soc. 131 (1968) 51 · Zbl 0157.30602 · doi:10.2307/1994680
[39] X Rong, Positively curved manifolds with almost maximal symmetry rank (2002) 157 · Zbl 1032.53025 · doi:10.1023/A:1021242512463
[40] P Scott, The geometries of \(3\)-manifolds, Bull. London Math. Soc. 15 (1983) 401 · Zbl 0561.57001 · doi:10.1112/blms/15.5.401
[41] C Searle, D Yang, On the topology of nonnegatively curved simply connected \(4\)-manifolds with continuous symmetry, Duke Math. J. 74 (1994) 547 · Zbl 0824.53036 · doi:10.1215/S0012-7094-94-07419-X
[42] S Smale, On the structure of \(5\)-manifolds, Ann. of Math. 75 (1962) 38 · Zbl 0101.16103 · doi:10.2307/1970417
[43] W Spindeler, Fixpunkthomogene \(S^1\)-Wirkungen auf \(5\)-Mannigfaltigkeiten nichtnegativer Krümmung (2009)
[44] B Totaro, Cheeger manifolds and the classification of biquotients, J. Differential Geom. 61 (2002) 397 · Zbl 1071.53529 · euclid:jdg/1090351529
[45] B Wilking, Torus actions on manifolds of positive sectional curvature, Acta Math. 191 (2003) 259 · Zbl 1062.53029 · doi:10.1007/BF02392966
[46] B Wilking, Nonnegatively and positively curved manifolds (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 25 · Zbl 1162.53026
[47] B Wilking, Group actions on nonnegatively and positively curved manifolds, Lecture notes, Münster (2010)
[48] W Ziller, Examples of Riemannian manifolds with nonnegative sectional curvature (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 63 · Zbl 1153.53033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.