×

zbMATH — the first resource for mathematics

A knot characterization and 1-connected nonnegatively curved 4-manifolds with circle symmetry. (English) Zbl 1317.53062
This paper gives a classification of nonnegatively curved, simply connected, 4-manifolds with a circle isometry group up to equivariant diffeomorphisms.

MSC:
53C23 Global geometric and topological methods (à la Gromov); differential geometric analysis on metric spaces
57M25 Knots and links in the \(3\)-sphere (MSC2010)
57M60 Group actions on manifolds and cell complexes in low dimensions
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] J Dinkelbach, B Leeb, Equivariant Ricci flow with surgery and applications to finite group actions on geometric \(3\)-manifolds, Geom. Topol. 13 (2009) 1129 · Zbl 1181.57023 · doi:10.2140/gt.2009.13.1129
[2] R Fintushel, Circle actions on simply connected \(4\)-manifolds, Trans. Amer. Math. Soc. 230 (1977) 147 · Zbl 0362.57014 · doi:10.2307/1997715
[3] R Fintushel, Classification of circle actions on \(4\)-manifolds, Trans. Amer. Math. Soc. 242 (1978) 377 · Zbl 0362.57015 · doi:10.2307/1997745
[4] M H Freedman, The topology of four-dimensional manifolds, J. Differential Geom. 17 (1982) 357 · Zbl 0528.57011 · euclid:jdg/1214437136
[5] F Galaz-Garcia, Fixed-point homogeneous nonnegatively curved Riemannian manifolds in low dimensions, PhD thesis, University of Maryland (2009) · Zbl 1254.53059
[6] F Galaz-Garcia, M Kerin, Cohomogeneity-two torus actions on non-negatively curved manifolds of low dimension, Math. Z. 276 (2014) 133 · Zbl 1296.53066 · doi:10.1007/s00209-013-1190-5
[7] K Grove, C Searle, Differential topological restrictions curvature and symmetry, J. Differential Geom. 47 (1997) 530 · Zbl 0929.53017 · euclid:jdg/1214460549
[8] R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982) 255 · Zbl 0504.53034 · www.intlpress.com · euclid:jdg/1214436922
[9] W Y Hsiang, B Kleiner, On the topology of positively curved \(4\)-manifolds with symmetry, J. Differential Geom. 29 (1989) 615 · Zbl 0674.53047 · euclid:jdg/1214443064
[10] V Kapovitch, Perelman’s stability theorem (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 103 · Zbl 1151.53038 · doi:10.4310/SDG.2006.v11.n1.a5
[11] M Kerin, On the curvature of biquotients, Math. Ann. 352 (2012) 155 · Zbl 1246.53054 · doi:10.1007/s00208-011-0634-7 · arxiv:0809.4771
[12] R C Kirby, L C Siebenmann, Normal bundles for codimension \(2\) locally flat imbeddings (editors L C Glaser, T B Rushing), Lecture Notes in Math. 438, Springer (1975) 310 · Zbl 0331.57004
[13] B A Kleiner, Riemannian four-manifolds with nonnegative curvature and continuous symmetry, PhD thesis, University of California, Berkeley (1990) · search.proquest.com
[14] R K Lashof, A nonsmoothable knot, Bull. Amer. Math. Soc. 77 (1971) 613 · Zbl 0229.57008 · doi:10.1090/S0002-9904-1971-12773-8
[15] P Orlik, F Raymond, Actions of the torus on \(4\)-manifolds, I, Trans. Amer. Math. Soc. 152 (1970) 531 · Zbl 0216.20202 · doi:10.2307/1995586
[16] P S Pao, Nonlinear circle actions on the \(4\)-sphere and twisting spun knots, Topology 17 (1978) 291 · Zbl 0403.57006 · doi:10.1016/0040-9383(78)90033-2
[17] A Petrunin, Semiconcave functions in Alexandrov’s geometry (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 137 · Zbl 1166.53001 · doi:10.4310/SDG.2006.v11.n1.a6
[18] M Sakuma, The geometries of spherical Montesinos links, Kobe J. Math. 7 (1990) 167 · Zbl 0727.57007
[19] C Searle, D Yang, On the topology of non-negatively curved simply connected \(4\)-manifolds with continuous symmetry, Duke Math. J. 74 (1994) 547 · Zbl 0824.53036 · doi:10.1215/S0012-7094-94-07419-X
[20] W Spindeler, \(S^1\)-actions on \(4\)-manifolds and fixed homogeneous manifolds of nonnegative curvature, PhD thesis, Münster (2014) · Zbl 1297.53006 · repositorium.uni-muenster.de
[21] B Wilking, Nonnegatively and positively curved manifolds (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, Int. Press (2007) 25 · Zbl 1162.53026 · doi:10.4310/SDG.2006.v11.n1.a3
[22] J A Wolf, Spaces of constant curvature, Amer. Math. Soc. (2011) · Zbl 1216.53003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.