×

Effect of impulsive controls in a model system for age-structured population over a patchy environment. (English) Zbl 1387.34115

Summary: In this paper, a very general model of impulsive delay differential equations in \(n\)-patches is rigorously derived to describe the impulsive control of population of a single species over \(n\)-patches. The model allows an age structure consisting of immatures and matures, and also considers mobility and culling of both matures and immatures. Conditions are obtained for extinction and persistence of the model system under three special scenarios: (1) without impulsive control; (2) with impulsive culling of the immatures only; and (3) with impulsive culling of the matures only, respectively. In the case of persistence, the persistence level is also estimated for the systems in the case of identical \(n\) patches, by relating the issue to the dynamics of multi-dimensional maps. Two illustrative examples and their numerical simulations are given to show the effectiveness of the results. Based on the theoretical results, some strategies of impulsive culling are provided to eradicate the population of a pest species.

MSC:

34K60 Qualitative investigation and simulation of models involving functional-differential equations
34K20 Stability theory of functional-differential equations
92D25 Population dynamics (general)
34K45 Functional-differential equations with impulses
34K25 Asymptotic theory of functional-differential equations
34K35 Control problems for functional-differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bainov DD, Stamova IM (1997) Second method of Lyapunov and comparison principle for impulsive differential-difference equations. J Aust Math Soc Ser B 38:489-505 · Zbl 0883.34073 · doi:10.1017/S0334270000000825
[2] Berman A, Plemmons RJ (1979) Nonnegative matrices in mathematical sciences. Academic, New York · Zbl 0484.15016
[3] Gopalsamy K, Zhang BG (1989) On delay differential equation with impulses. J Math Anal Appl 139:110-122 · Zbl 0687.34065 · doi:10.1016/0022-247X(89)90232-1
[4] Gourley SA, Liu R, Wu J (2007) Eradicating vector-borne diseases via age-structured culling. J Math Biol 54:309-335 · Zbl 1115.92041 · doi:10.1007/s00285-006-0050-x
[5] Gurney WSC, Blythe SP, Nisbet RM (1980) Nicholson’s blowflies revisited. Nature 287:17-21 · doi:10.1038/287017a0
[6] Ivanov AF, Sharkovsky AN (1992) Oscillations in singularly perturbed delay equations. Dyn Rep (New Ser) 1:164-224 · Zbl 0755.34065
[7] Lakshmikantham V, Bainov DD, Simeonov PS (1989) Theory of impulsive differential equations. World Scientific, Singapore · Zbl 0719.34002 · doi:10.1142/0906
[8] Li J, Zou X (2010) Dynamics of an epidemic model with non-local infections for diseaes with latency over a patchy environment. J Math Biol 60:645-686 · Zbl 1198.92040 · doi:10.1007/s00285-009-0280-9
[9] Liu X, Ballinger G (2002) Existence andcontinuability of solutions for differential equations with delays and state-dependent impulses. Nonlinear Anal 51:633-647 · Zbl 1015.34069 · doi:10.1016/S0362-546X(01)00847-1
[10] Liz E, Rost G (2010) Dichotomy results for delay differential equation with negative Schwarzian derivative. Nonlinear Anal Real World Appl 11:1422-2669 · Zbl 1207.34093 · doi:10.1016/j.nonrwa.2009.02.030
[11] Lou Y, Zhao X-Q (2009) Threshold dynamics in a time-delayed periodic SIS epidemic model. Discrete Contin Dyn Syst Ser B 12:169-186 · Zbl 1166.92035 · doi:10.3934/dcdsb.2009.12.169
[12] Mackey MC, Glass L (1977) Oscillation and chaos in physiological control system. Science 197:287-289 · Zbl 1383.92036 · doi:10.1126/science.267326
[13] Nieto JJ (2002) Impulsive resonance periodic problems of first order. Appl Math Lett 15:489-493 · Zbl 1022.34025 · doi:10.1016/S0893-9659(01)00163-X
[14] Rost G, Wu J (2007) Domain-decomposition method for the global dynamics of delay differential equations with unimodal feedback. Proc R Soc A 463:2655-2669 · Zbl 1137.34038 · doi:10.1098/rspa.2007.1890
[15] Simons RRL, Gourley SA (2006) Extinction criteria in stage-structured population models with impulsive culling. SIAM J Appl Math 66:1853-1870 · Zbl 1120.34064 · doi:10.1137/050637777
[16] Smith HL (1995) Monoton dynamical systems, an introductoin to the theory of competitive and cooperative systems, Mathematical Surveys and Monographs 41. Amer. Math. Soc, Providence · Zbl 0821.34003
[17] Smith HL, Thieme HR (1991) stongly order preserving semiflows generated by functional differential equations. J Differ Equ 93:332-363 · Zbl 0735.34065 · doi:10.1016/0022-0396(91)90016-3
[18] So JW-H, Wu J, Zou X (2001) Structured population on two patches: modeling dispersal and delay. J Math Biol 43:37-51 · Zbl 0986.92039 · doi:10.1007/s002850100081
[19] Stamova IM (2009) Stability analysis of impulsive functional differential equations. Walter de Gruyter, Berlin · Zbl 1189.34001 · doi:10.1515/9783110221824
[20] Terry AJ (2010) Impulsive adult culling of a tropical pest with a stage-structured life cycle. Nonlinear Anal RWA 11:645-664 · Zbl 1180.37131 · doi:10.1016/j.nonrwa.2009.01.005
[21] Terry AJ (2010) Impulsive culling of a stage-structured population on two patches. J Math Biol 61:843-875 · Zbl 1205.92078 · doi:10.1007/s00285-009-0325-0
[22] Thieme HR (1993) Persistence under relaxed point-dissipativity (with application to an endemic model). SIAM J Math Anal 24:407-435 · Zbl 0774.34030 · doi:10.1137/0524026
[23] Van den Driessche P, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transimission. Math Biosci 180:29-48 · Zbl 1015.92036 · doi:10.1016/S0025-5564(02)00108-6
[24] Weng P, Xiao C, Zou X (2010) Rich dynamics in a non-local population model over three patches. Nonlinear Dyn 59:161-172 · Zbl 1183.92087 · doi:10.1007/s11071-009-9529-5
[25] Xu D (2005) Global dynamics and Hopf bifurcation of a structured population model. Nonlinear Anal RWA 6:461-476 · Zbl 1083.34057 · doi:10.1016/j.nonrwa.2003.12.003
[26] Xu D, Zhao X-Q (2005) Dynamics in a periodic competitive model with stage structure. J Math Anal Appl 311:417-438 · Zbl 1077.37051 · doi:10.1016/j.jmaa.2005.02.062
[27] Yan J (2009) Global attractivity for impulsive population dynamics with delay arguments. Nonlinear Anal 71:5417-5426 · Zbl 1190.34104 · doi:10.1016/j.na.2009.04.030
[28] Yang Z, Xu D (2006) Existence and exponential stability of periodic solution for impulsive delay differential equations and applications. Nonlinear Anal 64:130-145 · Zbl 1092.34034 · doi:10.1016/j.na.2005.06.014
[29] Yi T, Zou X (2010) Map dynamics versus dynamics of associated delay R-D equation with Neumann boundary condition. Proc R Soc Lond A 466:2955-2973 · Zbl 1211.35150 · doi:10.1098/rspa.2009.0650
[30] Zhao X-Q (2003) Dynamical systems in population biology. Springer, New York · Zbl 1023.37047 · doi:10.1007/978-0-387-21761-1
[31] Zhao X-Q (2017) Basic reproduction ratios for periodic compartmental models with time delay. J Dyn Differ Equ 29(1):67-82 · Zbl 1365.34145 · doi:10.1007/s10884-015-9425-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.