×

Modeling the effect of magnetic field on wave propagation in ferrofluids and elastic bodies with void fraction. (English. Russian original) Zbl 1305.74034

Cybern. Syst. Anal. 49, No. 4, 569-577 (2013); translation from Kibern. Sist. Anal. 2013, No. 4, 97-106 (2013).
Summary: The paper presents two new generalized wave models. One considers the effect of a magnetic field on the elastic solid with void fraction. The other is a new generalized ferrohydrodynamic model describing wave propagation with finite velocities. The existence of wave solutions is investigated.

MSC:

74F15 Electromagnetic effects in solid mechanics
76W05 Magnetohydrodynamics and electrohydrodynamics
74J20 Wave scattering in solid mechanics
76B99 Incompressible inviscid fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] S. C. Cowin, ”Thermodynamic model for porous materials with vacuous pores,” J. Appl. Physics, 43, No. 6, 2495–2497 (1972). · doi:10.1063/1.1661548
[2] S. C. Cowin and J. W. Nunziato, ”Linear elastic materials with voids,” J. Elasticity, 13, 125–147 (1983). · Zbl 0523.73008 · doi:10.1007/BF00041230
[3] I. T. Selezov, ”Wave processes in fluids and elastic media,” Int. J. Fluid Mechanics Research, 30, No. 2, 219–249 (2003). · doi:10.1615/InterJFluidMechRes.v30.i2.80
[4] D. S. Chandrasekharalah, ”Complete solutions in the theory of elastic materials with voids,” Quart. J. Mech. and Appl. Math., 40, Pt. 3, 401–414 (1987). · Zbl 0618.73016 · doi:10.1093/qjmam/40.3.401
[5] A. Scalia, ”Shock waves in viscoelastic materials with voids,” Wave Motion, 19, 125–133 (1994). · Zbl 0928.74048 · doi:10.1016/0165-2125(94)90061-2
[6] J. C. Maxwell, ”On the dynamical theory of gases,” Phil. Trans. Roy. Soc., 157, 49–89 (1967). · doi:10.1098/rstl.1867.0004
[7] I. T. Selezov, ”On wave hyperbolic model for disturbance propagation in magnetic fluid,” 191, Ser. Operator Theory. Advances and Applications, Birkhauser Verlag, Basel (2009), pp. 221–225. · Zbl 1177.76466
[8] G. Colosqui, H. Chen, X. Shan, and I. Staroselsky, ”Propagating high-frequency shear waves in simple fluids,” Physics of Fluids, 21, 013105-1–013105-8 (2009). · Zbl 1183.76155
[9] J. D. Jackson, Classical Electrodynamics, John Wiley & Sons, Inc., New York–London (1962).
[10] I. T. Selezov and Yu. G. Krivonos, Mathematical Methods in Problems of Wave Propagation and Diffraction [in Russian], Naukova Dumka, Kyiv (2012).
[11] I. T. Selezov, Yu. G. Krivonos, and V. V. Yakovlev, Wave Scattering by Local Inhomogeneities in Continuous Media [in Russian], Naukova Dumka, Kyiv (1985).
[12] Yu. I. Samoilenko, ”Problems and methods of physical cybernetics,” in: Pratsi Inst. Matematiki NANU, 56 (2006). · Zbl 1150.68300
[13] J. L. Neuringer and R. E. Rosensweig, ”Ferrohydrodynamics,” Phys. Fluids., 7, No. 12, 1927–1937 (1964). · doi:10.1063/1.1711103
[14] R. E. Rosensweig, Ferrohydrodynamics, Cambridge Univ. Press (1985).
[15] B. Berkovsky, V. Medvedev, and M. Krakov, Magnetic Fluids: Engineering Applications, Oxford Univ. Press (1993).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.