×

zbMATH — the first resource for mathematics

The Eisenstein cocycle and Gross’s tower of fields conjecture. (English. French summary) Zbl 1415.11170
Summary: This paper is an announcement of the following result, whose proof will be forthcoming. Let \(F\) be a totally real number field, and let \(F \subset K \subset L\) be a tower of fields with \(L/F\) a finite abelian extension. Let \(I\) denote the kernel of the natural projection from \(\mathbb {Z}[\mathrm{Gal}(L/F)]\) to \(\mathbb {Z}[\mathrm{Gal}(K/F)]\). Let \(\Theta \in \mathbb {Z}[\mathrm{Gal}(L/F)]\) denote the Stickelberger element encoding the special values at zero of the partial zeta functions of \(L/F\), taken relative to sets \(S\) and \(T\) in the usual way. Let \(r\) denote the number of places in \(S\) that split completely in \(K\). We show that \(\Theta \in I^{r}\), unless \(K\) is totally real in which case we obtain \(\Theta \in I^{r-1}\) and \(2\Theta \in I^r\). This proves a conjecture of Gross up to the factor of 2 in the case that \(K\) is totally real and \(\#S \neq r\). In this article we sketch the proof in the case that \(K\) is totally complex.

MSC:
11R42 Zeta functions and \(L\)-functions of number fields
11R80 Totally real fields
PDF BibTeX Cite
Full Text: DOI
References:
[1] Cassou-Noguès, P, Valeurs aux entiers négatifs des fonctions zeta et fonctions zeta \(p\)-adiques, Invent. Math., 51, 29-59, (1979) · Zbl 0408.12015
[2] Charollois, P; Dasgupta, S, Integral Eisenstein cocycles on \({ GL}_n\), I: sczech’s cocycle and \(p\)-adic \(L\)- functions of totally real fields, Camb. J. Math., 2, 49-90, (2014) · Zbl 1353.11074
[3] Charollois, P; Dasgupta, S; Greenberg, M, Integral Eisenstein cocycles on \({ GL}_n\), II: shintani’s method, Commentarii Mathematici Helvetici, 90, 435-477, (2015) · Zbl 1326.11072
[4] Dasgupta, S., Spieß, M.: The Eisenstein cocycle, partial zeta values, and Gross-Stark units. Preprint, available at http://arxiv.org/abs/1411.4025 · Zbl 0809.11029
[5] Deligne, P; Ribet, K, Values of abelian \(L\)-functions at negative integers over totally real fields, Invent. Math., 59, 227-286, (1980) · Zbl 0434.12009
[6] Diaz y Diaz, F; Friedman, E, Signed fundamental domains for totally real number fields, Proc. Lond. Math. Soc., 104, 965-988, (2014) · Zbl 1325.11117
[7] Greither, C; Popescu, C, An equivariant main conjecture in Iwasawa theory and applications, J. Algebr. Geom., 24, 629-692, (2015) · Zbl 1330.11070
[8] Gross, BH, On the values of abelian \(L\), J. Fac. Sci. Univ. Tokyo Sect. IA Math., 35, 177-197, (1988) · Zbl 0681.12005
[9] Hill, R, Shintani cocycles on \(\textbf{GL}_n\), Bull. L.M.S., 39, 993-1004, (2007) · Zbl 1192.11030
[10] Hu, S., Solomon, D.: Properties of higher-dimensional Shintani generating functions and cocycles on \(\textbf{PGL}_3(\textbf{Q})\). Proc. L.M.S. 82, 64-88 (2001) · Zbl 1045.11035
[11] Sczech, R, Eisenstein group cocycle for \({ GL}_n\) and values of \(L\)-functions, Invent. Math., 113, 581-616, (1993) · Zbl 0809.11029
[12] Shintani, T, On the evaluation of zeta functions of totally real fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 23, 393-417, (1976) · Zbl 0349.12007
[13] Spieß, M, On special zeros of \(p\)-adic \(L\)-functions of Hilbert modular forms, Invent. Math., 196, 69-138, (2014) · Zbl 1392.11027
[14] Spieß, M, Shintani cocycles and the order of vanishing of \(p\)-adic Hecke \(L\)-series at \(s=0\), Math. Ann., 359, 239-265, (2014) · Zbl 1307.11125
[15] Steele, A, Adic shintani cocycles, Math. Res. Lett., 21, 403-422, (2014) · Zbl 1317.11116
[16] Stevens, G.: Eisenstein, The, measure and real quadratic fields. Théorie des nombres, pp. 887-927 (Québec:de Gruyter, Berlin (1987)) (1989) · Zbl 0408.12015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.