×

The \(K\)-theory of finite fields, revisited. (English) Zbl 0792.19001

This paper gives a new proof of Quillen’s theorem computing the \(K\)- theory of finite fields. The proof uses the Gabber rigidity theorem, the homotopy theory of simplicial presheaves, and the Lang isomorphism.

MSC:

19D50 Computations of higher \(K\)-theory of rings
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bousfield, A. K. and Friedlander, E. M., Homotopy theory of ?-spaces, spectra and bisimplicial sets,Lecture Notes in Math. 658, Springer, New York, 1978, pp. 80-150. · Zbl 0405.55021
[2] Friedlander, E. M.,Étale Homotopy of Simplicial Schemes, Ann. of Math. Stud. 104, Princeton University Press, Princeton, 1982. · Zbl 0538.55001
[3] Friedlander, E. M. and Parshall, B., Étale cohomology of reductive groups,Lecture Notes in Math. 854, Springer, New York, 1981, pp. 127-140. · Zbl 0495.14029
[4] Friedlander, E. M. and Mislin, G., Cohomology of classifying spaces of complex Lie groups and related discrete groups,Comment. Math. Helv. 59 (1984), 347-361. · Zbl 0548.55016 · doi:10.1007/BF02566356
[5] Gabber, O.,K-theory of Henselian local rings and Henselian pairs,Contemp. Math. 126 (1992), 59-70. · Zbl 0791.19002
[6] Hiller, H., ?-rings and algebraicK-theory,J. Pure Appl. Algebra 20 (1981), 241-266. · Zbl 0471.18007 · doi:10.1016/0022-4049(81)90062-1
[7] Jardine, J. F., Simplicial objects in a Grothendieck topos,Contemp. Math. 55(I (1986), 193-239. · Zbl 0606.18006
[8] Jardine, J. F., Cup products in sheaf cohomology,Canad. Math. Bull. 29 (1986), 469-477. · Zbl 0634.14010 · doi:10.4153/CMB-1986-074-2
[9] Jardine, J. F., Simplicial presheaves,J. Pure Appl. Algebra 47 (1987), 35-87. · Zbl 0624.18007 · doi:10.1016/0022-4049(87)90100-9
[10] Jardine, J. F., Stable homotopy theory of simplicial presheaves,Canad. J. Math. 39 (1987), 733-747. · Zbl 0645.18006 · doi:10.4153/CJM-1987-035-8
[11] Jardine, J. F., The homotopical foundations of algebraicK-theory,Contemp. Math. 83 (1989), 57-82.
[12] Kratzer, Ch., ?-Structure enK-théorie algébrique,Comment. Math. Helv. 55 (1980), 233-254. · Zbl 0444.18008 · doi:10.1007/BF02566684
[13] Quillen, D., On the cohomology andK-theory of the general linear groups over a finite field,Ann. of Math. 96 (1972), 552-586. · Zbl 0249.18022 · doi:10.2307/1970825
[14] Quillen, D., Higher algebraicK-theoryI, Lecture Notes in Math. 341, Springer, New York, 1973, pp. 85-147. · Zbl 0292.18004
[15] Stein, M. R., Surjective stability in dimension 0 forK 2 and related functors,Trans. AMS 178 (1973), 165-191. · Zbl 0267.18015
[16] Suslin, A. A., Stability in algebraicK-theory,Lecture Notes in Math. 966, Springer, New York, 1982, pp. 304-333.
[17] Suslin, A. A., On theK-theory of algebraically closed fields,Invent. Math. 73 (1983), 241-245. · Zbl 0514.18008 · doi:10.1007/BF01394024
[18] Suslin, A. A., On theK-theory of local fields,J. Pure Appl. Algebra 34 (1984), 301-318. · Zbl 0548.12009 · doi:10.1016/0022-4049(84)90043-4
[19] Thomason, R. W., AlgebraicK-theory and étale cohomology,Ann. Sci. École Norm. Sup. (4)18 (1985), 437-552. · Zbl 0596.14012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.