×

Bypassing the axial anomalies. (English) Zbl 1111.81336

Summary: Many meson processes are related to the \(U_A(1)\) axial anomaly, present in the Feynman graphs where fermion loops connect axial vertices with vector vertices. However, the coupling of pseudoscalar mesons to quarks does not have to be formulated via axial vertices. The pseudoscalar coupling is also possible, and this approach is especially natural on the level of the quark substructure of hadrons. In this paper we point out the advantages of calculating these processes using (instead of the anomalous graphs) the Feynman graphs where axial vertices are replaced by pseudoscalar vertices. We elaborate especially the case of the processes related to the Abelian axial anomaly of QED, but we speculate that it seems possible that effects of the non-Abelian axial anomaly of QCD can be accounted for in an analogous way.

MSC:

81V05 Strong interaction, including quantum chromodynamics
81T50 Anomalies in quantum field theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] DOI: 10.1103/PhysRev.177.2426 · doi:10.1103/PhysRev.177.2426
[2] DOI: 10.1007/BF02823296 · doi:10.1007/BF02823296
[3] DOI: 10.1103/PhysRevD.61.033006 · doi:10.1103/PhysRevD.61.033006
[4] DOI: 10.1016/S0370-2693(00)00241-0 · doi:10.1016/S0370-2693(00)00241-0
[5] Georgi H., Weak Interactions And Modern Particle Theory (1984)
[6] DOI: 10.1016/0370-2693(71)90582-X · doi:10.1016/0370-2693(71)90582-X
[7] DOI: 10.1103/PhysRev.76.1180 · Zbl 0036.27503 · doi:10.1103/PhysRev.76.1180
[8] DOI: 10.1016/S0370-1573(01)00010-2 · Zbl 0988.81551 · doi:10.1016/S0370-1573(01)00010-2
[9] DOI: 10.1142/S0218301303001326 · doi:10.1142/S0218301303001326
[10] DOI: 10.1142/S0217732395000284 · doi:10.1142/S0217732395000284
[11] DOI: 10.1088/0954-3899/24/1/004 · doi:10.1088/0954-3899/24/1/004
[12] DOI: 10.1016/j.physletb.2004.06.001 · doi:10.1016/j.physletb.2004.06.001
[13] DOI: 10.1016/j.physletb.2003.08.058 · Zbl 1058.81749 · doi:10.1016/j.physletb.2003.08.058
[14] DOI: 10.1103/PhysRevD.66.010001 · doi:10.1103/PhysRevD.66.010001
[15] DOI: 10.1016/0550-3213(79)90278-5 · doi:10.1016/0550-3213(79)90278-5
[16] DOI: 10.1088/0954-3899/26/9/305 · doi:10.1088/0954-3899/26/9/305
[17] DOI: 10.1103/PhysRevD.10.2993 · doi:10.1103/PhysRevD.10.2993
[18] DOI: 10.1103/PhysRevLett.8.261 · doi:10.1103/PhysRevLett.8.261
[19] DOI: 10.1103/PhysRevD.61.034013 · doi:10.1103/PhysRevD.61.034013
[20] DOI: 10.1103/PhysRevD.58.096003 · doi:10.1103/PhysRevD.58.096003
[21] DOI: 10.1088/0954-3899/27/8/307 · doi:10.1088/0954-3899/27/8/307
[22] DOI: 10.1142/S0217732386000671 · doi:10.1142/S0217732386000671
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.