×

A full-space quasi-Lagrange-Newton-Krylov algorithm for trajectory optimization problems. (English) Zbl 06883453

Summary: The objectives of this work are to study and to apply the full-space quasi-Lagrange-Newton-Krylov (FQLNK) algorithm for solving trajectory optimization problems arising from aerospace industrial applications. As its name suggests, in this algorithm we first convert the constrained optimization problem into an unconstrained one by introducing the augmented Lagrangian parameters. The next step is to find the optimal candidate solution by solving the Karush-Kuhn-Tucker (KKT) system with a Newton-Krylov method. To reduce the computational cost of constructing the KKT system, we employ the Broyden-Fletcher-Goldfarb-Shanno (BFGS) formula to build an approximation of the (1,1) subblock of the KKT matrix, which is the most expensive part of the overall computation. The BFGS-based FQLNK algorithm exhibits a superior speedup compared to some of the alternatives. We demonstrate our FQLNK algorithm to be a practical approach for designing an optimal trajectory of a launch vehicle in space missions.

MSC:

65K10 Numerical optimization and variational techniques
49M15 Newton-type methods
65H10 Numerical computation of solutions to systems of equations

Software:

GPOPS
PDFBibTeX XMLCite
Full Text: Link

References:

[1] M. BENZI, G. H. GOLUB,ANDJ. LIESEN, Numerical solution of saddle point problems, Acta Numer., 14 (2005), pp. 1-137. · Zbl 1115.65034
[2] J. T. BETTS, Survey of numerical methods for trajectory optimization, J. Guid. Contr. Dynam., 21 (1998), pp. 193-207. · Zbl 1158.49303
[3] , Very low-thrust trajectory optimization using a direct SQP method, J. Comput. Appl. Math., 120 (2000), pp. 27-40. · Zbl 0970.65072
[4] , Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, 2nd ed., SIAM, Philadelphia, 2010. · Zbl 1189.49001
[5] N. BIEHN, S. L. CAMPBELL, L. JAY,ANDT. WESTBROOK, Some comments on DAE theory for IRK methods and trajectory optimization, J. Comput. Appl. Math., 120 (2000), pp. 109-131. · Zbl 0956.65070
[6] G. BIROS ANDO. GHATTAS, Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. II. The Lagrange-Newton solver and its application to optimal control of steady viscous flows, SIAM J. Sci. Comput., 27 (2005), pp. 714-739. · Zbl 1091.65062
[7] , Parallel Lagrange-Newton-Krylov-Schur methods for PDE-constrained optimization. I. The Krylov– Schur solver, SIAM J. Sci. Comput., 27 (2005), pp. 687-713. · Zbl 1091.65061
[8] A. BRYSON ANDY.-C. HO, Applied Optimal Control, Hemisphere Publishing, Washington, 1975.
[9] J. DENNISJR.ANDR. SCHNABEL, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, SIAM, Philadelphia, 1996. · Zbl 0847.65038
[10] D. J. ESTEP, D. H. HODGES,ANDM. WARNER, The solution of a launch vehicle trajectory problem by an adaptive finite-element method, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 4677-4690. · Zbl 1007.70021
[11] F. FAHROO ANDI. ROSS, Costate estimation by a Legendre pseudospectral method, J. Guid. Contr. Dynam., 24 (2001), pp. 270-277.
[12] M. FINK, Automatic Differentiation for Matlab, MATLAB Central File Exchange. Retrieved May 18, 2015, 2007.
[13] P. E. GILL, L. O. JAY, M. W. LEONARD, L. R. PETZOLD,ANDV. SHARMA, An SQP method for the optimal control of large-scale dynamical systems, J. Comput. Appl. Math., 120 (2000), pp. 197-213. · Zbl 0963.65071
[14] D. G. HULL, Optimal Control Theory for Applications, Springer, New York, 2003. · Zbl 1113.49001
[15] F.-N. HWANG, H.-L. LIN,ANDX.-C. CAI, Two-level nonlinear elimination based preconditioners for inexact Newton methods with application in shocked duct flow calculation, Electron. Trans. Numer. Anal., 37 (2010), pp. 239-251. http://etna.ricam.oeaw.ac.at/vol.37.2010/pp239-251.dir/pp239-251.pdf · Zbl 1205.65180
[16] F.-N. HWANG, Y.-C. SU,ANDX.-C. CAI, A parallel adaptive nonlinear elimination preconditioned inexact Newton method for transonic full potential equation, Comput. & Fluids, 110 (2015), pp. 96-107. · Zbl 1390.76271
[17] C. T. KELLEY, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995. · Zbl 0832.65046
[18] P. LU ANDM. KHAN, Nonsmooth trajectory optimization-an approach using continuous simulated annealing, J. Guid. Contr, Dynam., 17 (1994), pp. 685-691. · Zbl 0996.49505
[19] R. T. MARLER ANDJ. S. ARORA, Survey of multi-objective optimization methods for engineering, Struct. Multidiscip. Optim., 26 (2004), pp. 369-395. ETNA Kent State University and Johann Radon Institute (RICAM) 122H.-H. WANG, Y.-S. LO, F.-T. HWANG, F.-N. HWANG · Zbl 1243.90199
[20] J. NOCEDAL ANDS. J. WRIGHT, Numerical Optimization, 2nd ed., Springer, New York, 2006. · Zbl 1104.65059
[21] M. A. PATTERSON ANDA. V. RAO, GPOPS − II: a MATLAB software for solving multiple-phase optimal control problems usinghp-adaptive Gaussian quadrature collocation methods and sparse nonlinear programming, ACM Trans. Math. Software, 41 (2014), Art. 1 (37 pages). · Zbl 1369.65201
[22] M. PONTANI, Particle swarm optimization of ascent trajectories of multistage launch vehicles, Acta Astronaut., 94 (2014), pp. 852-864.
[23] E. E. PRUDENCIO, R. BYRD,ANDX.-C. CAI, Parallel full space SQP Lagrange-Newton-Krylov-Schwarz algorithms for PDE-constrained optimization problems, SIAM J. Sci. Comput., 27 (2006), pp. 1305-1328. · Zbl 1092.49024
[24] A. V. RAO, Trajectory optimization: a survey, in Optimization and Optimal Control in Automotive Systems, H. Waschl, I. Kolmanovsky, M. Steinbuch, and L. del Re, eds., vol. 455 of Lect. Notes Control Inf. Sci., Springer, Cham, 2014, pp. 3-21. · Zbl 1307.90004
[25] W. ROH ANDY. KIM, Trajectory optimization for a multi-stage launch vehicle using time finite element and direct collocation methods, Eng. Optim., 34 (2002), pp. 15-32.
[26] Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., SIAM, Philadelphia, 2003. · Zbl 1031.65046
[27] M. R. SENTINELLA ANDL. CASALINO, Cooperative evolutionary algorithm for space trajectory optimization, Celestial Mech. Dynam. Astronom., 105 (2009), pp. 211-227. · Zbl 1223.70098
[28] K. SUBBARAO ANDB. SHIPPEY, Hybrid genetic algorithm collocation method for trajectory optimization, J. Guid. Contr, Dynam., 32 (2009), pp. 1396-1403.
[29] S. SUBCHAN ANDR. ˙ZBIKOWSKI, Computational Optimal Control: Tools and Practice, Wiley, New York, 2009.
[30] B. SURESH ANDK. SIVAN, Integrated Design for Space Transportation System, Springer, New Dehli, 2015.
[31] O.VONSTRYK ANDR. BULIRSCH, Direct and indirect methods for trajectory optimization, Ann. Oper. Res., 37 (1992), pp. 357-373. · Zbl 0784.49023
[32] P. WILLIAMS, Jacobi pseudospectral method for solving optimal control problems, J. Guid. Contr. Dynam., 27 (2004), pp. 293-297.
[33] A. WUERL, T. CRAIN,ANDE. BRADEN, Genetic algorithm and calculus of variations-based trajectory optimization technique, J. Spacecraft Rockets, 40 (2003), pp. 882-888.
[34] H. YANG, F.-N. HWANG,ANDX.-C. CAI, Nonlinear preconditioning techniques for full-space LagrangeNewton solution of PDE-constrained optimization problems, SIAM J. Sci. Comput., 38 (2016), pp. A2756– A2778. · Zbl 1348.65103
[35] H. YANG, S. SUN,ANDC. YANG, Nonlinearly preconditioned semismooth Newton methods for variational inequality solution of two-phase flow in porous media, J. Comput. Phys., 332 (2017), pp. 1-20. · Zbl 1378.76115
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.