×

The structure and dynamics of networks with higher order interactions. (English) Zbl 1523.81029

Summary: All beauty, richness and harmony in the emergent dynamics of a complex system largely depend on the specific way in which its elementary components interact. The last twenty-five years have seen the birth and development of the multidisciplinary field of Network Science, wherein a variety of distributed systems in physics, biology, social sciences and engineering have been modeled as networks of coupled units, in the attempt to unveil the mechanisms underneath their observed functionality. There is, however, a fundamental limit to such a representation: networks capture only pairwise interactions, whereas the functioning of many real-world systems not only involves dyadic connections, but rather is the outcome of collective actions at the level of groups of nodes. For instance, in ecological systems, three or more species may compete for food or territory, and similar multi-component interactions appear in functional and structural brain networks, protein interaction networks, semantic networks, multi-authors scientific collaborations, offline and online social networks, gene regulatory networks and spreading of consensus or contagious diseases due to multiple, simultaneous, contacts. Such multi-component interactions can only be grasped through either hypergraphs or simplicial complexes, which indeed have recently found a huge number of applications. In this report, we cover the extensive literature of the past years on this subject, and we focus on the structure and dynamics of hypergraphs and simplicial complexes. These are indeed becoming increasingly relevant, thanks to the enhanced resolution of data sets and the recent advances in data analysis techniques, which (concurrently and definitely) have shown that such structures play a pivotal role in the complex organization and functioning of real-world distributed systems.

MSC:

81P45 Quantum information, communication, networks (quantum-theoretic aspects)
68M12 Network protocols
81V05 Strong interaction, including quantum chromodynamics
05E45 Combinatorial aspects of simplicial complexes
82C32 Neural nets applied to problems in time-dependent statistical mechanics
91D30 Social networks; opinion dynamics
68N30 Mathematical aspects of software engineering (specification, verification, metrics, requirements, etc.)
05C15 Coloring of graphs and hypergraphs
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
00A06 Mathematics for nonmathematicians (engineering, social sciences, etc.)

Software:

Holes
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Koschmieder, E. L., Bénard Cells and Taylor Vortices (1993), Cambridge University Press · Zbl 0780.76003
[2] Getling, A. V., Rayleigh-Bénard Convection: Structures and Dynamics, Vol. 11 (1998), World Scientific · Zbl 0910.76001
[3] Arecchi, F. T.; Boccaletti, S.; Ramazza, P., Pattern formation and competition in nonlinear optics, Phys. Rep., 318, 1-2, 1-83 (1999)
[4] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D.-U., Complex networks: Structure and dynamics, Phys. Rep., 424, 4-5, 175-308 (2006) · Zbl 1371.82002
[5] Boccaletti, S.; Bianconi, G.; Criado, R.; Del Genio, C. I.; Gómez-Gardenes, J.; Romance, M.; Sendina-Nadal, I.; Wang, Z.; Zanin, M., The structure and dynamics of multilayer networks, Phys. Rep., 544, 1, 1-122 (2014)
[6] Latora, V.; Nicosia, V.; Russo, G., Complex Networks: Principles, Methods and Applications (2017), Cambridge University Press · Zbl 1387.68003
[7] Petri, G.; Expert, P.; Turkheimer, F.; Carhart-Harris, R.; Nutt, D.; Hellyer, P. J.; Vaccarino, F., Homological Scaffolds of brain functional networks, J. R. Soc. Interface, 11, 101, Article 20140873 pp. (2014)
[8] Lord, L.-D.; Expert, P.; Fernandes, H. M.; Petri, G.; Van Hartevelt, T. J.; Vaccarino, F.; Deco, G.; Turkheimer, F.; Kringelbach, M. L., Insights into brain architectures from the homological Scaffolds of functional connectivity networks, Front. Syst. Neurosci., 10, 85 (2016)
[9] Lee, H.; Kang, H.; Chung, M. K.; Kim, B.-N.; Lee, D. S., Persistent brain network homology from the perspective of dendrogram, IEEE Trans. Med. Imaging., 31, 12, 2267-2277 (2012)
[10] Sizemore, A. E.; Giusti, C.; Kahn, A.; Vettel, J. M.; Betzel, R. F.; Bassett, D. S., Cliques and cavities in the human connectome, J. Comp. Neurosci., 44, 1, 115-145 (2018) · Zbl 1402.92119
[11] Estrada, E.; Ross, G. J., Centralities in simplicial complexes. Applications to protein interaction networks, J. Theoret. Biol., 438, 46-60 (2018) · Zbl 1394.92040
[12] Sizemore, A. E.; Karuza, E. A.; Giusti, C.; Bassett, D. S., Knowledge gaps in the early growth of semantic networks (2017), arXiv preprint arXiv:1709.00133
[13] Patania, A.; Petri, G.; Vaccarino, F., The shape of collaborations, EPJ Data Sci., 6, 1, 18 (2017)
[14] Petri, G.; Scolamiero, M.; Donato, I.; Vaccarino, F., Topological strata of weighted complex networks, PLoS One, 8, 6, Article e66506 pp. (2013)
[15] Aleksandrov, P. S., Combinatorial Topology, Vol. 1 (1998), Courier Corporation
[16] Carlsson, G., Topology and data, Bull. Amer. Math. Soc., 46, 2, 255-308 (2009) · Zbl 1172.62002
[17] Salnikov, V.; Cassese, D.; Lambiotte, R., Simplicial complexes and complex systems, Eur. J. Phys., 40, 1, Article 014001 pp. (2018) · Zbl 1420.55033
[18] Costa, A.; Farber, M., Random simplicial complexes, (Configuration Spaces (2016), Springer, Berlin), 129-153 · Zbl 1398.55011
[19] Courtney, O. T.; Bianconi, G., Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E, 93, 6, Article 062311 pp. (2016)
[20] Bianconi, G.; Rahmede, C., Complex quantum network manifolds in dimension d \(> 2\) are scale-free, Sci. Rep., 5, 13979 (2015)
[21] Kovalenko, K.; Sendiña-Nadal, I.; Khalil, N.; Dainiak, A.; Musatov, D.; Raigorodskii, A. M.; Alfaro-Bittner, K.; Barzel, B.; Boccaletti, S., Growing scale-free simplices, Commun. Phys., 4, 1, 1-9 (2021)
[22] Petri, G.; Barrat, A., Simplicial activity driven model, Phys. Rev. Lett., 121, 22, Article 228301 pp. (2018)
[23] Iacopini, I.; Petri, G.; Barrat, A.; Latora, V., Simplicial models of social contagion, Nature Commun., 10, 1, 1-9 (2019)
[24] Li, Z.; Deng, Z.; Han, Z.; Alfaro-Bittner, K.; Barzel, B.; Boccaletti, S., Contagion in simplicial complexes, Chaos Solitons Fractals, 152, Article 111307 pp. (2021) · Zbl 07577226
[25] Guo, H.; Jia, D.; Sendiña-Nadal, I.; Zhang, M.; Wang, Z.; Li, X.; Alfaro-Bittner, K.; Moreno, Y.; Boccaletti, S., Evolutionary games on simplicial complexes, Chaos Solitons Fractals, 150, Article 111103 pp. (2021)
[26] Skardal, P. S.; Arenas, A., Abrupt desynchronization and extensive multistability in globally coupled oscillator simplexes, Phys. Rev. Lett., 122, Article 248301 pp. (2019)
[27] Gambuzza, L. V.; Di Patti, F.; Gallo, L.; Lepri, S.; Romance, M.; Criado, R.; Frasca, M.; Latora, V.; Boccaletti, S., Stability of synchronization in simplicial complexes, Nature Commun., 12, 1, 1-13 (2021)
[28] Battiston, F.; Cencetti, G.; Iacopini, I.; Latora, V.; Lucas, M.; Patania, A.; Young, J.-G.; Petri, G., Networks beyond pairwise interactions: Structure and dynamics, Phys. Rep., 874, 1-92 (2020) · Zbl 1472.05143
[29] Berge, C., Hypergraphs: Combinatorics of Finite Sets, Vol. 45 (1984), Elsevier
[30] Bretto, A., Hypergraph Theory. An Introduction. Mathematical Engineering (2013), Springer: Springer Cham · Zbl 1269.05082
[31] Voloshin, V. I., Introduction to Graph and Hypergraph Theory (2013), Nova Kroshka Books, UK
[32] Bianconi, G., Higher-Order Networks (2021), Cambridge University Press · Zbl 1494.82002
[33] Battiston, F.; Petri, G., Higher-order systems (2022) · Zbl 1495.93003
[34] Zhang, X.; Boccaletti, S.; Guan, S.; Liu, Z., Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett., 114, 3, Article 038701 pp. (2015)
[35] Estrada, E.; Rodriguez-Velazquez, J. A., Complex networks as hypergraphs (2005), arxiv preprint physics/0505137
[36] Johnson, J., Hypernetworks in the Science of Complex Systems, Vol. 3 (2013), World Scientific · Zbl 1296.94001
[37] Criado-Alonso, A.; Aleja, D.; Romance, M.; Criado, R., Derivative of a hypergraph as a tool for linguistic pattern analysis, Chaos Solitons Fractals, 163, Article 112604 pp. (2022)
[38] Criado-Alonso, Á.; Aleja, D.; Romance, M.; Criado, R., A new insight into linguistic pattern analysis based on multilayer hypergraphs for the automatic extraction of text summaries, Math. Methods Appl. Sci. (2023)
[39] Tyshkevich, R. I.; Zverovich, V. E., Line hypergraphs: A survey, Acta Appl. Math., 52, 1, 209-222 (1998) · Zbl 0908.05068
[40] Eilenberg, S.; Zilber, J. A., Semi-simplicial complexes and singular homology, Ann. of Math., 499-513 (1950) · Zbl 0036.12601
[41] Massey, W. S., A Basic Course in Algebraic Topology, Vol. 127 (2019), Springer
[42] Rotman, J. J., An Introduction to Algebraic Topology, Vol. 119 (2013), Springer Science & Business Media
[43] Zhou, D.; Huang, J.; Schölkopf, B., Learning with hypergraphs: Clustering, classification, and embedding, Adv. Neural Inf. Process. Syst., 19 (2006)
[44] Courtney, O. T.; Bianconi, G., Generalized network structures: The configuration model and the canonical ensemble of simplicial complexes, Phys. Rev. E, 93, Article 062311 pp. (2016)
[45] Gambuzza, L.; Di Patti, F.; Gallo, L.; Lepri, S.; Romance, M.; Herrero, R.; Frasca, M.; Latora, V.; Boccaletti, S., The Master Stability Function for Synchronization in Simplicial Complexes, 249-267 (2022), Springer International Publishing · Zbl 1514.70018
[46] Kovalenko, K.; Romance, M.; Vasilyeva, E.; Aleja, D.; Criado, R.; Musatov, D.; Raigorodskii, A.; Flores, J.; Samoylenko, I.; Alfaro-Bittner, K., Vector centrality in hypergraphs, Chaos Solitons Fractals, 162, Article 112397 pp. (2022) · Zbl 1506.05153
[47] Whitney, H., Congruent graphs and the connectivity of graphs, Amer. J. Math., 54, 1, 150-168 (1932) · JFM 58.0609.01
[48] Hemminger, R.; Beineke, L., (Lowell, W. B.; Wilson, R. J., Line Graphs and Line Digraphs, Selected Topics in Graph Theory (1978), Academic Press: Academic Press New York) · Zbl 0434.05056
[49] Bermond, J.-C.; Heydemann, M.-C.; Sotteau, D., Line graphs of hypergraphs I, Discrete Math., 18, 3, 235-241 (1977) · Zbl 0366.05047
[50] Heydemann, M.-C.; Sotteau, D., Line graphs of hypergraphs II, (Colloq. Math. Soc. J. Bolyai, vol. 18 (1976)), 567-582 · Zbl 0426.05042
[51] Bagga, J., Old and new generalizations of line graphs, Int. J. Math. Math. Sci., 2004, 29, 1509-1521 (2004) · Zbl 1061.05078
[52] Benson, A. R., Three hypergraph eigenvector centralities, SIAM J. Math. Data Sci., 1, 2, 293-312 (2019) · Zbl 1499.05432
[53] Criado, R.; Flores, J.; García del Amo, A.; Romance, M., Centralities of a network and its line graph: An analytical comparison by means of their irregularity, Int. J. Comput. Math., 91, 2, 304-314 (2014) · Zbl 1291.05198
[54] Criado, R.; Flores, J.; Garcia del Amo, A.; Romance, M.; Barrena, E.; Mesa, J. A., Line graphs for a multiplex network, Chaos, 26, 6, Article 065309 pp. (2016) · Zbl 1374.05218
[55] Evans, T. S.; Lambiotte, R., Line graphs, link partitions, and overlapping communities, Phys. Rev. E, 80, 1, Article 016105 pp. (2009)
[56] Evans, T. S.; Lambiotte, R., Line graphs of weighted networks for overlapping communities, Eur. Phys. J. B, 77, 2, 265-272 (2010)
[57] Naik, R. N., On intersection graphs of graphs and hypergraphs: A survey (2018), arXiv preprint arXiv:1809.08472
[58] Arrigo, F.; Higham, D. J.; Tudisco, F., A framework for second-order eigenvector centralities and clustering coefficients, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 476, 2236, Article 20190724 pp. (2020) · Zbl 1472.65043
[59] Tudisco, F.; Higham, D. J., Node and edge nonlinear eigenvector centrality for hypergraphs, Commun. Phys., 4, 1, 1-10 (2021)
[60] Lemmens, B.; Nussbaum, R., Nonlinear Perron-Frobenius Theory, Vol. 189 (2012), Cambridge University Press · Zbl 1246.47001
[61] Jaccard, P., Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines, Bull. Soc. Vaudoise Sci. Nat., 37, 241-272 (1901)
[62] Brusco, M.; Cradit, J. D.; Steinley, D., A comparison of 71 binary similarity coefficients: The effect of base rates, PLoS One, 16, 4, Article e0247751 pp. (2021)
[63] Costa, L.d. F., Further generalizations of the Jaccard I ndex (2021), arXiv preprint arXiv:2110.09619
[64] Costa, L.d. F., On the effects of text preprocessing on paragraph similarity networks (2022)
[65] Costa, L.d. F., On similarity, Physica A, 599, Article 127456 pp. (2022) · Zbl 07562496
[66] Costa, L.d. F., Coincidence complex networks, J. Phys.: Complexity, 3, 1, Article 015012 pp. (2022)
[67] Talaga, S.; Nowak, A., Structural measures of similarity and complementarity in complex networks, Sci. Rep., 12, 1, 1-18 (2022)
[68] Vijaymeena, M.; Kavitha, K., A survey on similarity measures in text mining, Mach. Learn. Appl.: Int. J., 3, 2, 19-28 (2016)
[69] Bollobás, B., Random graphs, (Modern Graph Theory (1998), Springer), 215-252
[70] Chung, F. R., Spectral Graph Theory, Vol. 92 (1997), American Mathematical Soc. · Zbl 0867.05046
[71] Mohar, B., The Laplacian Spectrum of Graphs. Graph Theory, Combinatorics and Applications, Vol. 2 (1988), 871-898 (1991), Wiley-Intersci. Publ., Wiley: Wiley-Intersci. Publ., Wiley New York · Zbl 0840.05059
[72] Schaub, M. T.; Benson, A. R.; Horn, P.; Lippner, G.; Jadbabaie, A., Random walks on simplicial complexes and the normalized Hodge 1-Laplacian, SIAM Rev., 62, 2, 353-391 (2020) · Zbl 1441.05205
[73] Mulas, R.; Horak, D.; Jost, J., Graphs, simplicial complexes and hypergraphs: Spectral theory and topology, (Higher-Order Systems (2022), Springer), 1-58 · Zbl 1505.05092
[74] Rodriguez, J. A., On the Laplacian eigenvalues and metric parameters of hypergraphs, Linear Multilinear Algebra, 50, 1, 1-14 (2002) · Zbl 1008.05102
[75] Rodriguez, J. A., Laplacian eigenvalues and partition problems in hypergraphs, Appl. Math. Lett., 22, 6, 916-921 (2009) · Zbl 1188.05093
[76] Rodriguez, J. A., On the Laplacian spectrum and walk-regular hypergraphs, Linear Multilinear Algebra, 51, 3, 285-297 (2003) · Zbl 1050.05085
[77] J. Körner, Coding of an information source having ambiguous alphabet and the entropy of graphs, in: 6th Prague Conference on Information Theory, 1973, pp. 411-425. · Zbl 0298.94022
[78] Maletić, S.; Rajković, M., Combinatorial Laplacian and entropy of simplicial complexes associated with complex networks, Eur. Phys. J. Spec. Top., 212, 1, 77-97 (2012)
[79] Courtney, O. T.; Bianconi, G., Weighted growing simplicial complexes, Phys. Rev. E, 95, 6, Article 062301 pp. (2017)
[80] Šuvakov, M.; Andjelković, M.; Tadić, B., Hidden geometries in networks arising from cooperative self-assembly, Sci. Rep., 8, 1, 1-10 (2018)
[81] Barrat, A.; Weigt, M., On the properties of small-world network models, Eur. Phys. J. B, 13, 3, 547-560 (2000)
[82] Newman, M. E., Scientific collaboration networks. I. Network construction and fundamental results, Phys. Rev. E, 64, 1, Article 016131 pp. (2001)
[83] Bonacich, P., Factoring and weighting approaches to status scores and clique identification, J. Math. Sociol., 2, 1, 113-120 (1972)
[84] Dorogovtsev, S. N.; Mendes, J. F., Evolution of networks, Adv. Phys., 51, 4, 1079-1187 (2002)
[85] Newman, M. E., The structure and function of complex networks, SIAM Rev., 45, 2, 167-256 (2003) · Zbl 1029.68010
[86] Estrada, E., The Structure of Complex Networks: Theory and Applications (2012), Oxford University Press · Zbl 1267.05001
[87] Albert, R.; Barabási, A.-L., Statistical mechanics of complex networks, Rev. Modern Phys., 74, 47-97 (2002) · Zbl 1205.82086
[88] Barabási, A.-L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[89] Becker, N. G.; Dietz, K., The effect of household distribution on transmission and control of highly infectious diseases, Math. Biosci., 127, 2, 207-219 (1995) · Zbl 0824.92025
[90] Ball, F.; Mollison, D.; Scalia-Tomba, G., Epidemics with two levels of mixing, Ann. Appl. Probab., 46-89 (1997) · Zbl 0909.92028
[91] Ball, F., Stochastic and deterministic models for SIS epidemics among a population partitioned into households, Math. Biosci., 156, 1-2, 41-67 (1999) · Zbl 0979.92033
[92] Ghoshal, G.; Sander, L.; Sokolov, I., SIS epidemics with household structure: The self-consistent field method, Math. Biosci., 190, 1, 71-85 (2004) · Zbl 1048.92029
[93] Ferguson, N. M.; Cummings, D. A.; Cauchemez, S.; Fraser, C.; Riley, S.; Meeyai, A.; Iamsirithaworn, S.; Burke, D. S., Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437, 7056, 209-214 (2005)
[94] Neal, P., Stochastic and deterministic analysis of SIS household epidemics, Adv. Appl. Probab., 38, 4, 943-968 (2006) · Zbl 1103.92035
[95] Wu, J. T.; Riley, S.; Fraser, C.; Leung, G. M., Reducing the impact of the next influenza pandemic using household-based public health interventions, PLoS Med., 3, 9, Article e361 pp. (2006)
[96] Ball, F.; O’Neill, P. D.; Pike, J., Stochastic epidemic models in structured populations featuring dynamic vaccination and isolation, J. Appl. Probab., 44, 3, 571-585 (2007) · Zbl 1128.92035
[97] Dodd, P.; Ferguson, N., Approximate disease dynamics in household-structured populations, J. R. Soc. Interface, 4, 17, 1103-1106 (2007)
[98] Fraser, C., Estimating individual and household reproduction numbers in an emerging epidemic, PLoS One, 2, 8, Article e758 pp. (2007)
[99] House, T.; Keeling, M. J., Deterministic epidemic models with explicit household structure, Math. Biosci., 213, 1, 29-39 (2008) · Zbl 1135.92029
[100] St-Onge, G.; Thibeault, V.; Allard, A.; Dubé, L. J.; Hébert-Dufresne, L., Social confinement and mesoscopic localization of epidemics on networks, Phys. Rev. Lett., 126, 9, Article 098301 pp. (2021)
[101] St-Onge, G.; Thibeault, V.; Allard, A.; Dubé, L. J.; Hébert-Dufresne, L., Master equation analysis of mesoscopic localization in contagion dynamics on higher-order networks, Phys. Rev. E, 103, 3, Article 032301 pp. (2021)
[102] Kermack, W. O.; McKendrick, A. G., Contributions to the mathematical theory of epidemics - I, Proc. R. Soc., 115A, 700-721 (1927) · JFM 53.0517.01
[103] Barrat, A.; Barthelemy, M.; Vespignani, A., Dynamical Processes on Complex Networks (2008), Cambridge University Press · Zbl 1198.90005
[104] Kiss, I. Z.; Miller, J. C.; Simon, P. L., Mathematics of Epidemics on Networks, Vol. 598 (2017), Springer: Springer Cham · Zbl 1373.92001
[105] Bodó, Á.; Katona, G. Y.; Simon, P. L., SIS epidemic propagation on hypergraphs, Bull. Math. Biol., 78, 4, 713-735 (2016) · Zbl 1339.05270
[106] Ma, T.; Guo, J., Study on information transmission model of enterprise informal organizations based on the hypernetwork, Chinese J. Phys., 56, 5, 2424-2438 (2018)
[107] Suo, Q.; Guo, J.-L.; Shen, A.-Z., Information spreading dynamics in hypernetworks, Physica A, 495, 475-487 (2018) · Zbl 1514.91155
[108] Jhun, B.; Jo, M.; Kahng, B., Simplicial SIS model in scale-free uniform hypergraph, J. Stat. Mech. Theory Exp., 2019, 12, Article 123207 pp. (2019) · Zbl 1459.82363
[109] de Arruda, G. F.; Petri, G.; Moreno, Y., Social contagion models on hypergraphs, Phys. Rev. Res., 2, 2, Article 023032 pp. (2020)
[110] Wang, D.; Zhao, Y.; Luo, J.; Leng, H., Simplicial SIRS epidemic models with nonlinear incidence rates, Chaos, 31, 5, Article 053112 pp. (2021) · Zbl 1462.92054
[111] Matamalas, J. T.; Gómez, S.; Arenas, A., Abrupt phase transition of epidemic spreading in simplicial complexes, Phys. Rev. Res., 2, 1, Article 012049 pp. (2020)
[112] Burgio, G.; Arenas, A.; Gómez, S.; Matamalas, J. T., Network clique cover approximation to analyze complex contagions through group interactions, Commun. Phys., 4, 1, 1-10 (2021)
[113] Cisneros-Velarde, P.; Bullo, F., Multi-group SIS epidemics with simplicial and higher-order interactions, IEEE Trans. Control Netw. Syst. (2021)
[114] Landry, N. W.; Restrepo, J. G., The effect of heterogeneity on hypergraph contagion models, Chaos, 30, 10, Article 103117 pp. (2020) · Zbl 1451.92297
[115] Higham, D. J.; De Kergorlay, H.-L., Epidemics on hypergraphs: Spectral thresholds for extinction, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 477, 2252, Article 20210232 pp. (2021)
[116] St-Onge, G.; Sun, H.; Allard, A.; Hébert-Dufresne, L.; Bianconi, G., Universal nonlinear infection kernel from heterogeneous exposure on higher-order networks, Phys. Rev. Lett., 127, 15, Article 158301 pp. (2021)
[117] St-Onge, G.; Iacopini, I.; Latora, V.; Barrat, A.; Petri, G.; Allard, A.; Hébert-Dufresne, L., Influential groups for seeding and sustaining nonlinear contagion in heterogeneous hypergraphs, Commun. Phys., 5, 1, 1-16 (2022)
[118] Jhun, B., Effective epidemic containment strategy in hypergraphs, Phys. Rev. Res., 3, 3, Article 033282 pp. (2021)
[119] Ghosh, D.; Frasca, M.; Rizzo, A.; Majhi, S.; Rakshit, S.; Alfaro-Bittner, K.; Boccaletti, S., The synchronized dynamics of time-varying networks, Phys. Rep., 949, 1-63 (2022) · Zbl 1503.93025
[120] Chowdhary, S.; Kumar, A.; Cencetti, G.; Iacopini, I.; Battiston, F., Simplicial contagion in temporal higher-order networks, J. Phys.: Complexity, 2, 3, Article 035019 pp. (2021)
[121] Wang, J.-P.; Guo, Q.; Yang, G.-Y.; Liu, J.-G., Improved knowledge diffusion model based on the collaboration hypernetwork, Physica A, 428, 250-256 (2015)
[122] Peng, G.; Wang, H.; Zhang, H.; Huang, K., A hypernetwork-based approach to collaborative retrieval and reasoning of engineering design knowledge, Adv. Eng. Inform., 42, Article 100956 pp. (2019)
[123] Barbarossa, S.; Sardellitti, S., Topological signal processing over simplicial complexes, IEEE Trans. Signal Process., 68, 2992-3007 (2020) · Zbl 07590943
[124] Torres, J. J.; Bianconi, G., Simplicial complexes: Higher-order spectral dimension and dynamics, J. Phys.: Complexity, 1, 1, Article 015002 pp. (2020)
[125] Bianconi, G.; Rahmede, C., Network geometry with flavor: From complexity to quantum geometry, Phys. Rev. E, 93, 3, Article 032315 pp. (2016)
[126] Bianconi, G.; Rahmede, C., Emergent hyperbolic network geometry, Sci. Rep., 7, 1, 1-9 (2017)
[127] Chan, T.-H. H.; Louis, A.; Tang, Z. G.; Zhang, C., Spectral properties of hypergraph Laplacian and approximation algorithms, J. ACM, 65, 3, 1-48 (2018) · Zbl 1426.05163
[128] Chan, T.-H. H.; Tang, Z. G.; Wu, X.; Zhang, C., Diffusion operator and spectral analysis for directed hypergraph Laplacian, Theoret. Comput. Sci., 784, 46-64 (2019) · Zbl 1428.05184
[129] Chan, T.-H. H.; Liang, Z., Generalizing the hypergraph laplacian via a diffusion process with mediators, Theoret. Comput. Sci., 806, 416-428 (2020) · Zbl 1442.05145
[130] Jost, J.; Mulas, R., Hypergraph Laplace operators for chemical reaction networks, Adv. Math., 351, 870-896 (2019) · Zbl 1415.05107
[131] Ferraz de Arruda, G.; Tizzani, M.; Moreno, Y., Phase transitions and stability of dynamical processes on hypergraphs, Commun. Physics, 4, 1, 1-9 (2021)
[132] Ugander, J.; Backstrom, L.; Marlow, C.; Kleinberg, J., Structural diversity in social contagion, Proc. Natl. Acad. Sci., 109, 16, 5962-5966 (2012)
[133] SocioPatterns Collaboration (2022), http://www.sociopatterns.org/. (Accessed June 2022)
[134] Matamalas, J. T.; Arenas, A.; Gómez, S., Effective approach to epidemic containment using link equations in complex networks, Sci. Adv., 4, 12, eaau4212 (2018)
[135] Gómez, S.; Arenas, A.; Borge-Holthoefer, J.; Meloni, S.; Moreno, Y., Discrete-time Markov chain approach to contact-based disease spreading in complex networks, Europhys. Lett., 89, 3, 38009 (2010)
[136] Dorogovtsev, S. N.; Mendes, J. F.; Samukhin, A. N., Size-dependent degree distribution of a scale-free growing network, Phys. Rev. E, 63, 6, Article 062101 pp. (2001)
[137] Cai, W.; Chen, L.; Ghanbarnejad, F.; Grassberger, P., Avalanche outbreaks emerging in cooperative contagions, Nat. Phys., 11, 11, 936-940 (2015)
[138] Poletto, C.; Meloni, S.; Van Metre, A.; Colizza, V.; Moreno, Y.; Vespignani, A., Characterising two-pathogen competition in spatially structured environments, Sci. Rep., 5, 1, 1-9 (2015)
[139] Perra, N., Non-pharmaceutical interventions during the COVID-19 pandemic: A review, Phys. Rep., 913, 1-52 (2021)
[140] Lucas, M.; Iacopini, I.; Robiglio, T.; Barrat, A.; Petri, G., Simplicially driven simple contagion, Phys. Rev. Res., 5, 1, Article 013201 pp. (2023)
[141] Li, W.; Xue, X.; Pan, L.; Lin, T.; Wang, W., Competing spreading dynamics in simplicial complex, Appl. Math. Comput., 412, Article 126595 pp. (2022) · Zbl 1510.92218
[142] Nie, Y.; Li, W.; Pan, L.; Lin, T.; Wang, W., Markovian approach to tackle competing pathogens in simplicial complex, Appl. Math. Comput., 417, Article 126773 pp. (2022) · Zbl 1510.92232
[143] Nie, Y.; Zhong, X.; Lin, T.; Wang, W., Homophily in competing behavior spreading among the heterogeneous population with higher-order interactions, Appl. Math. Comput., 432, Article 127380 pp. (2022) · Zbl 1510.91136
[144] Holme, P.; Saramäki, J., Temporal networks, Phys. Rep., 519, 3, 97-125 (2012)
[145] Nie, Y.; Zhong, X.; Wu, T.; Liu, Y.; Lin, T.; Wang, W., Effects of network temporality on coevolution spread epidemics in higher-order network, J. King Saud Univ.-Comput. Inf. Sci. (2022)
[146] Palafox-Castillo, G.; Berrones-Santos, A., Stochastic epidemic model on a simplicial complex, Physica A, 606, Article 128053 pp. (2022) · Zbl 07605484
[147] Hethcote, H. W., The mathematics of infectious diseases, SIAM Rev., 42, 4, 599-653 (2000) · Zbl 0993.92033
[148] Jódar, L.; Villanueva, R. J.; Arenas, A., Modeling the spread of seasonal epidemiological diseases: Theory and applications, Math. Comput. Modelling, 48, 3-4, 548-557 (2008) · Zbl 1145.92336
[149] Thornley, S.; Bullen, C.; Roberts, M., Hepatitis B in a high prevalence New Zealand population: A mathematical model applied to infection control policy, J. Theoret. Biol., 254, 3, 599-603 (2008) · Zbl 1400.92543
[150] Pastor-Satorras, R.; Vespignani, A., Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86, 14, 3200 (2001)
[151] Wang, D.; Zhao, Y.; Leng, H.; Small, M., A social communication model based on simplicial complexes, Phys. Lett. A, 384, 35, Article 126895 pp. (2020) · Zbl 1448.91219
[152] Kozlov, D., Combinatorial Algebraic Topology, Vol. 21 (2008), Springer Science & Business Media · Zbl 1130.55001
[153] Lanchier, N.; Neufer, J., Stochastic dynamics on hypergraphs and the spatial majority rule model, J. Stat. Phys., 151, 1, 21-45 (2013) · Zbl 1269.82043
[154] Tsiatas, A.; Chung, F., Hypergraph coloring games and voter models, Internet Math., 10, 1, 1558 (2014) · Zbl 1461.05140
[155] Gradowski, T.; Krawiecki, A., Majority-vote model on scale-free hypergraphs, Acta Phys. Polon. A, 127, 3A (2015)
[156] Horstmeyer, L.; Kuehn, C., Adaptive voter model on simplicial complexes, Phys. Rev. E, 101, 2, Article 022305 pp. (2020)
[157] Neuhäuser, L.; Mellor, A.; Lambiotte, R., Multibody interactions and nonlinear consensus dynamics on networked systems, Phys. Rev. E, 101, 3, Article 032310 pp. (2020)
[158] Alvarez-Rodriguez, U.; Battiston, F.; de Arruda, G. F.; Moreno, Y.; Perc, M.; Latora, V., Evolutionary dynamics of higher-order interactions in social networks, Nat. Hum. Behav., 5, 5, 586-595 (2021)
[159] Schlager, D.; Clauß, K.; Kuehn, C., Stability analysis of multiplayer games on adaptive simplicial complexes, Chaos, 32, 5, Article 053128 pp. (2022)
[160] Granovetter, M., Threshold models of collective behavior, Am. J. Sociol., 83, 6, 1420-1443 (1978)
[161] Xie, J.; Sreenivasan, S.; Korniss, G.; Zhang, W.; Lim, C.; Szymanski, B. K., Social consensus through the influence of committed minorities, Phys. Rev. E, 84, 1, Article 011130 pp. (2011)
[162] Castellano, C.; Fortunato, S.; Loreto, V., Statistical physics of social dynamics, Rev. Modern Phys., 81, 2, 591 (2009)
[163] Vespignani, A., Modelling dynamical processes in complex socio-technical systems, Nat. Phys., 8, 1, 32-39 (2012)
[164] Dall’Asta, L.; Baronchelli, A.; Barrat, A.; Loreto, V., Nonequilibrium dynamics of language games on complex networks, Phys. Rev. E, 74, 3, Article 036105 pp. (2006)
[165] Iacopini, I.; Petri, G.; Baronchelli, A.; Barrat, A., Group interactions modulate critical mass dynamics in social convention, Commun. Phys., 5, 1, 1-10 (2022)
[166] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: A Universal Concept in Nonlinear Sciences, Vol. 12 (2003), Cambridge University Press · Zbl 1219.37002
[167] Boccaletti, S.; Pisarchik, A. N.; Del Genio, C. I.; Amann, A., Synchronization: From Coupled Systems to Complex Networks (2018), Cambridge University Press · Zbl 1380.90001
[168] Barahona, M.; Pecora, L. M., Synchronization in small-world systems, Phys. Rev. Lett., 89, 5, Article 054101 pp. (2002)
[169] Chavez, M.; Hwang, D.-U.; Amann, A.; Hentschel, H. G.E.; Boccaletti, S., Synchronization is enhanced in weighted complex networks, Phys. Rev. Lett., 94, Article 218701 pp. (2005)
[170] del Genio, C. I.; Gómez-Gardeñes, J.; Bonamassa, I.; Boccaletti, S., Synchronization in networks with multiple interaction layers, Sci. Adv., 2, 11 (2016)
[171] Gutiérrez, R.; Amann, A.; Assenza, S.; Gómez-Gardenes, J.; Latora, V.; Boccaletti, S., Emerging meso-and macroscales from synchronization of adaptive networks, Phys. Rev. Lett., 107, 23, Article 234103 pp. (2011)
[172] Avalos-Gaytán, V.; Almendral, J. A.; Leyva, I.; Battiston, F.; Nicosia, V.; Latora, V.; Boccaletti, S., Emergent explosive synchronization in adaptive complex networks, Phys. Rev. E, 97, Article 042301 pp. (2018)
[173] Gambuzza, L. V.; Cardillo, A.; Fiasconaro, A.; Fortuna, L.; Gómez-Gardenes, J.; Frasca, M., Analysis of remote synchronization in complex networks, Chaos, 23, 4, Article 043103 pp. (2013) · Zbl 1331.34086
[174] Nicosia, V.; Valencia, M.; Chavez, M.; Díaz-Guilera, A.; Latora, V., Remote synchronization reveals network symmetries and functional modules, Phys. Rev. Lett., 110, Article 174102 pp. (2013)
[175] Pecora, L. M.; Sorrentino, F.; Hagerstrom, A. M.; Murphy, T. E.; Roy, R., Cluster synchronization and isolated desynchronization in complex networks with symmetries, Nature Commun., 5, 1, 1-8 (2014)
[176] Gambuzza, L. V.; Frasca, M.; Latora, V., Distributed control of synchronization of a group of network nodes, IEEE Trans. Automat. Control, 64, 1, 365-372 (2018) · Zbl 1423.34065
[177] Abrams, D. M.; Strogatz, S. H., Chimera states for coupled oscillators, Phys. Rev. Lett., 93, 17, Article 174102 pp. (2004)
[178] Panaggio, M. J.; Abrams, D. M., Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators, Nonlinearity, 28, 3, R67 (2015) · Zbl 1392.34036
[179] Bi, H.; Hu, X.; Boccaletti, S.; Wang, X.; Zou, Y.; Liu, Z.; Guan, S., Coexistence of quantized, time dependent, clusters in globally coupled oscillators, Phys. Rev. Lett., 117, 20, Article 204101 pp. (2016)
[180] Xu, C.; Boccaletti, S.; Guan, S.; Zheng, Z., Origin of Bellerophon states in globally coupled phase oscillators, Phys. Rev. E, 98, 5, Article 050202 pp. (2018)
[181] Boccaletti, S.; Almendral, J.; Guan, S.; Leyva, I.; Liu, Z.; Sendiña-Nadal, I.; Wang, Z.; Zou, Y., Explosive transitions in complex networks’ structure and dynamics: Percolation and synchronization, Phys. Rep., 660, 1-94 (2016) · Zbl 1359.34048
[182] Belykh, V. N.; Belykh, I. V.; Hasler, M., Connection graph stability method for synchronized coupled chaotic systems, Physica D, 195, 1-2, 159-187 (2004) · Zbl 1098.82622
[183] Li, Z.; Chen, G., Global synchronization and asymptotic stability of complex dynamical networks, IEEE Trans. Circuits Syst. II, 53, 1, 28-33 (2006)
[184] Pecora, L. M.; Carroll, T. L., Master stability functions for synchronized coupled systems, Phys. Rev. Lett., 80, 10, 2109 (1998)
[185] Mulas, R.; Kuehn, C.; Jost, J., Coupled dynamics on hypergraphs: Master stability of steady states and synchronization, Phys. Rev. E, 101, 6, Article 062313 pp. (2020)
[186] Krawiecki, A., Chaotic synchronization on complex hypergraphs, Chaos Solitons Fractals, 65, 44-50 (2014) · Zbl 1348.34089
[187] Carletti, T.; Fanelli, D.; Nicoletti, S., Dynamical systems on hypergraphs, J. Phys.: Complexity, 1, 3, Article 035006 pp. (2020)
[188] Sun, J.; Bollt, E. M.; Nishikawa, T., Master stability functions for coupled nearly identical dynamical systems, Europhys. Lett., 85, 6, 60011 (2009)
[189] Stilwell, D. J.; Bollt, E. M.; Roberson, D. G., Sufficient conditions for fast switching synchronization in time-varying network topologies, SIAM J. Appl. Dyn. Syst., 5, 1, 140-156 (2006) · Zbl 1145.37345
[190] Frasca, M.; Buscarino, A.; Rizzo, A.; Fortuna, L.; Boccaletti, S., Synchronization of moving chaotic agents, Phys. Rev. Lett., 100, 4, Article 044102 pp. (2008)
[191] Zhou, J.; Zou, Y.; Guan, S.; Liu, Z.; Boccaletti, S., Synchronization in slowly switching networks of coupled oscillators, Sci. Rep., 6, 1, 1-8 (2016)
[192] Della Rossa, F.; DeLellis, P., Stochastic master stability function for noisy complex networks, Phys. Rev. E, 101, 5, Article 052211 pp. (2020)
[193] Rössler, O. E., An equation for continuous chaos, Phys. Lett. A, 57, 5, 397-398 (1976) · Zbl 1371.37062
[194] Strogatz, S. H., Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering (2018), CRC Press
[195] Acebrón, J. A.; Bonilla, L. L.; Vicente, C. J.P.; Ritort, F.; Spigler, R., The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Modern Phys., 77, 1, 137 (2005)
[196] Rodrigues, F. A.; Peron, T. K.D.; Ji, P.; Kurths, J., The Kuramoto model in complex networks, Phys. Rep., 610, 1-98 (2016) · Zbl 1357.34089
[197] Kuramoto, Y., Chemical turbulence, (Chemical Oscillations, Waves, and Turbulence (1984), Springer), 111-140 · Zbl 0558.76051
[198] Strogatz, S. H., From Kuramoto to Crawford: Exploring the onset of synchronization in populations of coupled oscillators, Physica D, 143, 1-4, 1-20 (2000) · Zbl 0983.34022
[199] Kumar, A.; Jalan, S., Explosive synchronization in interlayer phase-shifted Kuramoto oscillators on multiplex networks, Chaos: Interdiscipl. J. Nonlinear Sci. (Fast Track), 3, Article 041103 pp. (2021) · Zbl 1460.34065
[200] Kachhvah, A. D.; Jalan, S., Explosive synchronization and chimera in interpinned multilayer networks, Phys. Rev. E, 104 (2021)
[201] Tanaka, T.; Aoyagi, T., Multistable attractors in a network of phase oscillators with three-body interactions, Phys. Rev. Lett., 106, 22, Article 224101 pp. (2011)
[202] Skardal, P. S.; Arenas, A., Higher order interactions in complex networks of phase oscillators promote abrupt synchronization switching, Commun. Phys., 3, 218 (2020)
[203] Millán, A. P.; Torres, J. J.; Bianconi, G., Explosive higher-order Kuramoto dynamics on simplicial complexes, Phys. Rev. Lett., 124, 218301 (2020)
[204] Lucas, M.; Cencetti, G.; Battiston, F., Multiorder Laplacian for synchronization in higher-order networks, Phys. Rev. Res., 2, 3, Article 033410 pp. (2020)
[205] Skardal, P. S.; Arenas, A., Memory selection and information switching in oscillator networks with higher-order interactions, J. Phys.: Complexity, 2, 1, Article 015003 pp. (2020)
[206] Kundu, S.; Ghosh, D., Higher-order interactions promote chimera states, Phys. Rev. E, 105, L042202 (2022)
[207] Kovalenko, K.; Dai, X.; Alfaro-Bittner, K.; Raigorodskii, A. M.; Perc, M.; Boccaletti, S., Contrarians synchronize beyond the limit of pairwise interactions, Phys. Rev. Lett., 127, Article 258301 pp. (2021)
[208] Ott, E.; Antonsen, T. M., Low dimensional behavior of large systems of globally coupled oscillators, Chaos, 18, 3, Article 037113 pp. (2008) · Zbl 1309.34058
[209] Bick, C.; Böhle, T.; Kuehn, C., Multi-population phase oscillator networks with higher-order interactions, NoDEA Nonlinear Differential Equations Appl., 29, 64 (2022) · Zbl 1506.35235
[210] Jalan, S.; Suman, A., Multiple first-order transitions in simplicial complexes on multilayer systems, Phys. Rev. E, 106, 4, Article 044304 pp. (2022)
[211] Philip Seliger, S. C.Y.; Tsimring, L. S., Plasticity and learning in a network of coupled phase oscillators, Phys. Rev. E, 65, 041906 (2002) · Zbl 1244.34078
[212] Zhou, C.; Kurths, J., Dynamical weights and enhanced synchronization in adaptive complex networks, Phys. Rev. Lett., 96, 16, Article 164102 pp. (2006)
[213] De Lellis, P.; di Bernardo, M.; Garofalo, F., Novel decentralized adaptive strategies for the synchronization of complex networks, Automatica, 45, 5, 1312-1318 (2009) · Zbl 1162.93361
[214] Šiljak, D., Dynamic graphs, Nonlinear Anal. Hybrid Syst., 2, 2, 544-567 (2008) · Zbl 1169.68036
[215] De Lellis, P.; Garofalo, F.; Porfiri, M., Evolution of complex networks via edge snapping, IEEE Trans. Circuits Syst. I. Regul. Pap., 57, 8, 2132-2143 (2010) · Zbl 1468.93093
[216] Zhang, X.; Boccaletti, S.; Guan, S.; Liu, Z., Explosive synchronization in adaptive and multilayer networks, Phys. Rev. Lett., 114, 038701 (2015)
[217] Hebb, D. O., The Organization of Behavior: A Neuropsychological Theory (2005), Psychology Press
[218] H. Markram, M. F.; Sakmann, B., Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs, Science, 275, 213 (1997)
[219] Berner, R.; Sawicki, J.; Schöll, E., Birth and stabilization of phase clusters by multiplexing of adaptive networks, Phys. Rev. Lett., 124, 8, Article 088301 pp. (2020)
[220] Pitsik, E.; Makarov, V.; Kirsanov, D.; Frolov, N.; Goremyko, M.; Li, X.; Wang, Z.; Hramov, A.; Boccaletti, S., Inter-layer competition in adaptive multiplex network, New J. Phys., 20, 7, Article 075004 pp. (2018)
[221] Kachhvah, A. D.; Dai, X.; Boccaletti, S.; Jalan, S., Interlayer hebbian plasticity induces first-order transition in multiplex networks, New J. Phys., 22, 12, Article 122001 pp. (2020)
[222] Kachhvah, A. D.; Jalan, S., Hebbian plasticity rules abrupt desynchronization in pure simplicial complexes, New J. Phys. (Fast Track), 24, Article 052002 pp. (2022)
[223] Kachhvah, A. D.; Jalan, S., First-order route to antiphase clustering in adaptive simplicial complexes, Phys. Rev. E, 105, 6, L062203 (2022)
[224] Malayaja Chutani, B. T.; Gupte, N., Hysteresis and synchronization processes of Kuramoto oscillators on high-dimensional simplicial complexes with competing simplex-encoded couplings, Phys. Rev. E, 104, Article 034206 pp. (2021)
[225] Motter, A. E.; Myers, S. A.; Anghel, M.; Nishikawa, T., Spontaneous synchrony in power-grid networks, Nat. Phys., 9, 3, 191-197 (2013)
[226] Schnitzler, A.; Gross, J., Normal and pathological oscillatory communication in the brain, Nat. Rev. Neurosci., 6, 4, 285-296 (2005)
[227] DeVille, L., Consensus on simplicial complexes: Results on stability and synchronization, Chaos, 31, 2, Article 023137 pp. (2021) · Zbl 1461.93464
[228] Araque, A.; Carmignoto, G.; Haydon, P. G.; Oliet, S. H.; Robitaille, R.; Volterra, A., Gliotransmitters travel in time and space, Neuron, 81, 4, 728-739 (2014)
[229] Ghorbanchian, R.; Restrepo, J. G.; Torres, P. G.; Bianconi, G., Higher-order simplicial synchronization of coupled topological signals, Commun. Phys., 4, 1, 1-13 (2021)
[230] Hagmann, P.; Cammoun, L.; Gigandet, X.; Meuli, R.; Honey, C. J.; Wedeen, V. J.; Sporns, O., Mapping the structural core of human cerebral cortex, PLoS Biol., 6, 7, Article e159 pp. (2008)
[231] Varshney, L. R.; Chen, B. L.; Paniagua, E.; Hall, D. H.; Chklovskii, D. B., Structural properties of the Caenorhabditis elegans neuronal network, PLoS Comput. Biol., 7, 2, Article e1001066 pp. (2011)
[232] Arnaudon, A.; Peach, R. L.; Petri, G.; Expert, P., Connecting hodge and Sakaguchi-Kuramoto through a mathematical framework for coupled oscillators on simplicial complexes, Commun. Phys., 5, 1, 1-12 (2022)
[233] Sakaguchi, H.; Kuramoto, Y., A soluble active rotater model showing phase transitions via mutual entertainment, Progr. Theoret. Phys., 76, 3, 576-581 (1986)
[234] Anderson, B.; Ye, M., Recent advances in the modelling and analysis of opinion dynamics on influence networks, Int. J. Autom. Comput., 16, 2, 129-149 (2019)
[235] Lewis, F. L., Wireless sensor networks, Smart Environ.: Technol., Protoc., Appl., 11-46 (2004)
[236] Lin, J.; Morse, A. S.; Anderson, B. D., The multi-agent rendezvous problem, (42nd IEEE International Conference on Decision and Control, Vol. 2 (2003), IEEE), 1508-1513
[237] Bertsekas, D.; Tsitsiklis, J., Parallel and Distributed Computation: Numerical Methods (1989), Prentice-Hall: Prentice-Hall Englewood Cliff, NJ · Zbl 0743.65107
[238] Chatterjee, S.; Seneta, E., Towards consensus: Some convergence theorems on repeated averaging, J. Appl. Probab., 14, 1, 89-97 (1977) · Zbl 0381.60056
[239] DeGroot, M. H., Reaching a consensus, J. Amer. Statist. Assoc., 69, 345, 118-121 (1974) · Zbl 0282.92011
[240] Siljak, D. D., Large-Scale Dynamic Systems: Stability and Structure (1978), North-Holland New York · Zbl 0384.93002
[241] Olfati-Saber, R.; Murray, R. M., Consensus problems in networks of agents with switching topology and time-delays, IEEE Trans. Automat. Control, 49, 9, 1520-1533 (2004) · Zbl 1365.93301
[242] Blondel, V. D.; Hendrickx, J. M.; Tsitsiklis, J. N., On Krause’s multi-agent consensus model with state-dependent connectivity, IEEE Trans. Automat. Control, 54, 11, 2586-2597 (2009) · Zbl 1367.93426
[243] Neuhäuser, L.; Lambiotte, R.; Schaub, M. T., Consensus dynamics on temporal hypergraphs, Phys. Rev. E, 104, 6, Article 064305 pp. (2021)
[244] Neuhäuser, L.; Lambiotte, R.; Schaub, M. T., Consensus dynamics and opinion formation on hypergraphs, (Higher-Order Systems (2022), Springer), 347-376 · Zbl 1504.91222
[245] Nijholt, E.; DeVille, L., Dynamical systems defined on simplicial complexes: Symmetries, conjugacies, and invariant subspaces, Chaos, 32, 9, Article 093131 pp. (2022)
[246] Sahasrabuddhe, R.; Neuhäuser, L.; Lambiotte, R., Modelling non-linear consensus dynamics on hypergraphs, J. Phys.: Complexity, 2, 2, Article 025006 pp. (2021)
[247] Schawe, H.; Hernández, L., Higher order interactions destroy phase transitions in Deffuant opinion dynamics model, Commun. Phys., 5, 1, 1-9 (2022)
[248] Asch, S. E., Effects of group pressure upon the modification and distortion of judgments, (Guetzkow, H., Groups, Leadership and Men (1951), Carnegie Press), 177-190
[249] McPherson, M.; Smith-Lovin, L.; Cook, J. M., Birds of a feather: Homophily in social networks, Annu. Rev. Sociol., 415-444 (2001)
[250] Deffuant, G.; Neau, D.; Amblard, F.; Weisbuch, G., Mixing beliefs among interacting agents, Adv. Complex Syst., 3, 01n04, 87-98 (2000)
[251] Olfati-Saber, R.; Fax, J. A.; Murray, R. M., Consensus and cooperation in networked multi-agent systems, Proc. IEEE, 95, 1, 215-233 (2007) · Zbl 1376.68138
[252] Clifford, P.; Sudbury, A., A model for spatial conflict, Biometrika, 60, 3, 581-588 (1973) · Zbl 0272.60072
[253] Holley, R. A.; Liggett, T. M., Ergodic theorems for weakly interacting infinite systems and the voter model, Ann. Probab., 643-663 (1975) · Zbl 0367.60115
[254] Redner, S., A Guide to First-Passage Processes (2001), Cambridge University Press · Zbl 0980.60006
[255] Galam, S., Minority opinion spreading in random geometry, Eur. Phys. J. B, 25, 4, 403-406 (2002)
[256] Noonan, J.; Lambiotte, R., Dynamics of majority rule on hypergraphs, Phys. Rev. E, 104, 2, Article 024316 pp. (2021)
[257] Guckenheimer, J.; Holmes, P., Structurally stable heteroclinic cycles, (Mathematical Proceedings of the Cambridge Philosophical Society, vol. 103 (1988), Cambridge University Press), 189-192 · Zbl 0645.58022
[258] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 2, 130-141 (1963) · Zbl 1417.37129
[259] Sel’Kov, E., Self-oscillations in glycolysis 1. A simple kinetic model, Eur. J. Biochem., 4, 1, 79-86 (1968)
[260] Liu, Y.-Y.; Barabási, A.-L., Control principles of complex systems, Rev. Modern Phys., 88, 3, Article 035006 pp. (2016)
[261] Chen, T.; Liu, X.; Lu, W., Pinning complex networks by a single controller, IEEE Trans. Circuits Syst. I. Regul. Pap., 54, 6, 1317-1326 (2007) · Zbl 1374.93297
[262] Della Rossa, F.; De Lellis, P., Synchronization and pinning control of stochastic coevolving networks, Annu. Rev. Control, 53, 147-160 (2022)
[263] Grigoriev, R.; Cross, M.; Schuster, H., Pinning control of spatiotemporal chaos, Phys. Rev. Lett., 79, 15, 2795 (1997)
[264] Lu, W.; Li, X.; Rong, Z., Global stabilization of complex networks with digraph topologies via a local pinning algorithm, Automatica, 46, 1, 116-121 (2010) · Zbl 1214.93090
[265] Porfiri, M.; di Bernardo, M., Criteria for global pinning-controllability of complex networks, Automatica, 44, 12, 3100-3106 (2008) · Zbl 1153.93329
[266] Sorrentino, F.; di Bernardo, M.; Garofalo, F.; Chen, G., Controllability of complex networks via pinning, Phys. Rev. E, 75, 4, Article 046103 pp. (2007)
[267] Wang, X. F.; Chen, G., Pinning control of scale-free dynamical networks, Physica A, 310, 3-4, 521-531 (2002) · Zbl 0995.90008
[268] Gao, J.; Liu, Y.-Y.; D’souza, R. M.; Barabási, A.-L., Target control of complex networks, Nature Commun., 5, 1, 1-8 (2014)
[269] Liu, Y.-Y.; Slotine, J.-J.; Barabási, A.-L., Controllability of complex networks, Nature, 473, 7346, 167-173 (2011)
[270] Lo Iudice, F.; Garofalo, F.; Sorrentino, F., Structural permeability of complex networks to control signals, Nature Commun., 6, 1, 1-6 (2015)
[271] Yuan, Z.; Zhao, C.; Di, Z.; Wang, W.-X.; Lai, Y.-C., Exact controllability of complex networks, Nature Commun., 4, 1, 1-9 (2013)
[272] Yan, G.; Ren, J.; Lai, Y.-C.; Lai, C.-H.; Li, B., Controlling complex networks: How much energy is needed?, Phys. Rev. Lett., 108, 21, Article 218703 pp. (2012)
[273] Sun, J.; Motter, A. E., Controllability transition and nonlocality in network control, Phys. Rev. Lett., 110, 20, Article 208701 pp. (2013)
[274] Pasqualetti, F.; Zampieri, S.; Bullo, F., Controllability metrics, limitations and algorithms for complex networks, IEEE Trans. Control Netw. Syst., 1, 1, 40-52 (2014) · Zbl 1370.93164
[275] Li, A.; Cornelius, S. P.; Liu, Y.-Y.; Wang, L.; Barabási, A.-L., The fundamental advantages of temporal networks, Science, 358, 6366, 1042-1046 (2017)
[276] De Lellis, P.; Di Meglio, A.; Garofalo, F.; Lo Iudice, F., The inherent uncertainty of temporal networks is a true challenge for control, Sci. Rep., 11, 1, 1-7 (2021)
[277] Chen, C.; Surana, A.; Bloch, A. M.; Rajapakse, I., Controllability of hypergraphs, IEEE Trans. Netw. Sci. Eng., 8, 2, 1646-1657 (2021)
[278] Salzano, D.; Fiore, D.; di Bernardo, M., Ratiometric control of cell phenotypes in monostrain microbial consortia, J. R. Soc. Interface, 19, 192, Article 20220335 pp. (2022)
[279] De Lellis, P.; Della Rossa, F.; Iudice, F. L.; Liuzza, D., Pinning control of hypergraphs, IEEE Control Syst. Lett., 7, 691-696 (2022)
[280] Gallo, G.; Longo, G.; Pallottino, S.; Nguyen, S., Directed hypergraphs and applications, Discrete Appl. Math., 42, 2-3, 177-201 (1993) · Zbl 0771.05074
[281] Kalman, R. E., Mathematical description of linear dynamical systems, J. Soc. Ind. Appl. Math., Ser. A: Control, 1, 2, 152-192 (1963) · Zbl 0145.34301
[282] Fujarewicz, K.; Kimmel, M.; Swierniak, A., On fitting of mathematical models of cell signaling pathways using adjoint systems, Math. Biosci. Eng., 2, 3, 527 (2005) · Zbl 1079.92024
[283] Jurdjevic, V.; Kupka, I., Polynomial control systems, Math. Ann., 272, 3, 361-368 (1985) · Zbl 0554.93033
[284] Melody, J.; Basar, T.; Bullo, F., On nonlinear controllability of homogeneous systems linear in control, IEEE Trans. Automat. Control, 48, 1, 139-143 (2003) · Zbl 1364.93071
[285] Aeyels, D., Local and global controllability for nonlinear systems, Systems Control Lett., 5, 1, 19-26 (1984) · Zbl 0552.93009
[286] Zeng, A.; Shen, Z.; Zhou, J.; Wu, J.; Fan, Y.; Wang, Y.; Stanley, H. E., The science of science: From the perspective of complex systems, Phys. Rep., 714, 1-73 (2017) · Zbl 1377.91146
[287] Tanaka, H.-A.; Lichtenberg, A. J.; Oishi, S., First order phase transition resulting from finite inertia in coupled oscillator systems, Phys. Rev. Lett., 78, 11, 2104 (1997)
[288] Rohden, M.; Sorge, A.; Timme, M.; Witthaut, D., Self-organized synchronization in decentralized power grids, Phys. Rev. Lett., 109, 6, Article 064101 pp. (2012)
[289] Dörfler, F.; Chertkov, M.; Bullo, F., Synchronization in complex oscillator networks and smart grids, Proc. Natl. Acad. Sci., 110, 6, 2005-2010 (2013) · Zbl 1292.94185
[290] Filatrella, G.; Nielsen, A. H.; Pedersen, N. F., Analysis of a power grid using a Kuramoto-like model, Eur. Phys. J. B, 61, 485-491 (2008)
[291] Sabhahit, N. G.; Khurd, A. S.; Jalan, S., Self-consistent method for Kuramoto oscillators with inertia having higher-order interactions (2023), arXiv preprint arXiv:2303.08363
[292] Guo, T.; Zhang, Y.; Xue, Y.; Qiao, L.; Shen, D., Brain function network: Higher order vs. more discrimination, Front. Neurosci., 15, Article 696639 pp. (2021)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.