×

Analysis of mixed correlated overdispersed binomial and ordinal longitudinal responses: LogLindley-Binomial and ordinal random effects model. (English) Zbl 07540758

Summary: We propose a new model called LogLindley-Binomial and ordinal joint model with random effects for analyzing mixed overdispersed binomial and ordinal longitudinal responses. A new distribution called the LogLindley-Binomial is presented, which is appropriate for the analysis of overdispersed binomial variables. A full likelihood-based approach is used to obtain maximum likelihood estimates. A comparison between LogLindley-Binomial and Beta-Binomial distributions are given by a simulation study. Also, to illustrate the utility of the proposed model, some simulation studies are conducted. In simulation studies, the performances of the LogLindley-Binomial distribution and the proposed model are well in some situations. Also, the new model’s performance for analyzing a real dataset, extracted from the British Household Panel Survey, is studied. The proposed model performs well in comparison with another model for analyzing real data. Finally, the proposed distribution and the new model are found to be applicable for analyzing overdispersed binomial and mixed data.

MSC:

62Pxx Applications of statistics

Software:

LBFGS-B
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Aitkin, M., A general maximum likelihood analysis of overdispersion in generalized linear models, Stat. Comput., 6, 251-262 (1996)
[2] Aitkin, M.; Seeber, G. U.H.; Francis, B. J.; Hatzinger, R.; Steckel-Berger, G., NPML Estimation of the Mixing Distribution in General Statistical Models with Unobserved Random Variation (1995), New York: New York, Springer-Verlag
[3] Agresti, A., An Introduction to Categorical Data Analysis (2007), Hoboken, NJ: Hoboken, NJ, John Wiley & Sons Inc. · Zbl 1266.62008
[4] Arnold, T. B.; Emerson, J. W., Nonparametric goodness-of-fit tests for discrete null distributions, R. J., 3, 34-39 (2011)
[5] Burnham, A. P.; Anderson, D. R., Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2002), Springer-Verlag · Zbl 1005.62007
[6] Byrd, R. H.; Lu, P.; Noceda, J.; Zhu, C., A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190-1208 (1995) · Zbl 0836.65080
[7] Casella, G.; Berger, R. L., Statistical Inference (2002), Pacific Grove: Pacific Grove, Duxbury Press
[8] Christensen, R., Plane Answers to Complex Questions: The Theory of Linear Models (2011), New York: New York, Springer · Zbl 1266.62043
[9] Dunson, D. B., Bayesian latent variable models for clustered mixed outcomes, J. R. Stat. Soc.: Ser. B, 62, 355-366 (2000)
[10] Fletcher, R., Practical Methods of Optimization (2000), John Wiley: John Wiley, New York · Zbl 0905.65002
[11] Gilmour, A. R.; Anderson, R. D.; Rea, A. L., The analysis of binomial data by a generalized linear mixed model, Biometrika, 72, 593-599 (1985)
[12] Heckman, J. J., Dummy endogenous variables in a simultaneous equation system, Econometrica, 46, 931-959 (1978) · Zbl 0382.62095
[13] Ivanova, A.; Molenberghs, G.; Verbeke, G., Mixed models approaches for joint modeling of different types of responses, J. Biopharm. Stat., 26, 601-618 (2016)
[14] Kim, J.; Lee, J. H., The validation of a beta-binomial model for overdispersed binomial data, Commun. Stat. Simul. Comput., 46, 807-814 (2015) · Zbl 1362.62045
[15] Kullback, S.; Leibler, R. A., On information and sufficiency, Ann. Math. Stat., 22, 79-86 (1951) · Zbl 0042.38403
[16] Lindley, D. V., Fiducial distributions and Bayess theorem, J. R. Stat. Soc.: Ser. B, 20, 102-107 (1958) · Zbl 0085.35503
[17] Razie, F.; Samani, E. B.; Ganjali, M., Latent variable model for mixed correlated power series and ordinal longitudinal responses with nonignorable missing values, Commun. Stat. - Theory Methods, 46, 5738-5753 (2016) · Zbl 1462.62326
[18] Samani, E. B.; Ganjali, M., A multivariate latent variable model for mixed continuous and ordinal responses, World Appl. Sci. J., 3, 294-299 (2008)
[19] Samani, E. B.; Ganjali, M., Analyzing mixed correlated continuous and ordinal responses: A latent variable approach, J. Appl. Stat. Sci., 17, 1-17 (2009)
[20] Samani, E. B.; Ganjali, M.; Khodadadi, A., A latent variable model for mixed continuous and ordinal responses, J. Stat. Theory Appl., 7, 337-349 (2008)
[21] Sammel, M.; Lin, X.; Ryan, L., Multivariate linear mixed models for multiple outcomes, Stat. Med., 18, 2479-2492 (1999)
[22] Sammel, M. D.; Ryan, L. M.; Legler, J. M., Latent variable models for mixed discrete and continuous outcomes, J. R. Stat. Soc.: Ser. B, 59, 667-678 (1997) · Zbl 0889.62043
[23] Student, An explanation of deviations from Poisson’s law in practice, Biometrika, 12, 211-215 (1919)
[24] Tabrizi, E.; Samani, E. B.; Ganjali, M., A note on the identifiability of latent variable models for mixed longitudinal data, Stat. Probab. Lett., 167 (2020) · Zbl 1455.62102
[25] Tate, R. F., Correlation between a discrete and a continuous variable, Ann. Math. Stat., 25, 603-607 (1954) · Zbl 0056.36702
[26] Teimourian, M.; Baghfalaki, T.; Ganjali, M.; Berridge, D., Joint modeling of mixed skewed continuous and ordinal longitudinal responses: A Bayesian approach, J. Appl. Stat., 42, 2233-2256 (2015) · Zbl 07269689
[27] Wang, W., Identifiability of linear mixed effects models, Electron. J. Stat., 7, 244-263 (2013) · Zbl 1337.62182
[28] Wu, H.; Zhang, Y.; Long, J. D., Longitudinal beta-binomial modeling using gee for overdispersed binomial data, Stat. Med., 36, 1029-1040 (2017)
[29] Zakerzadeh, H.; Dolati, A., Generalized Lindley distribution, J. Math. Ext., 3, 13-25 (2010) · Zbl 1274.60047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.