×

Controllability of damped second-order impulsive neutral functional differential systems with infinite delay. (English) Zbl 1237.93023

Summary: In this paper, the controllability problem is discussed for the damped second-order impulsive neutral functional differential systems with infinite delay in Banach spaces. Sufficient conditions for controllability results are derived by means of Sadovskii’s fixed point theorem combined with a noncompact condition on the cosine family of operators. An example is provided to illustrate the theory.

MSC:

93B05 Controllability
34K40 Neutral functional-differential equations
93C15 Control/observation systems governed by ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hale, J.K., Lunel, S.M.V.: Introduction to Functional Differential Equations. Springer, Berlin (1991) · Zbl 0751.34037
[2] Hale, J.K., Kato, J.: Phase space for retarded equations with infinite delay. Funkc. Ekvacioj 21, 11–41 (1978) · Zbl 0383.34055
[3] Kappel, F., Schappacher, W.: Some considerations to the fundamental theory of infinite delay equations. J. Differ. Equ. 37, 141–183 (1980) · Zbl 0466.34036 · doi:10.1016/0022-0396(80)90093-5
[4] Hino, Y., Murakami, S., Naito, T.: Functional Differential Equations with Infinite Delay. Lecture Notes in Mathematics, vol. 1473. Springer, Berlin (1991) · Zbl 0732.34051
[5] Bainov, D.D., Simeonov, P.S.: Impulsive Differential Equations: Periodic Solutions and Applications. Longman, Harlow (1993) · Zbl 0815.34001
[6] Lakshmikantham, V., Bainov, D.D., Simeonov, P.S.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989) · Zbl 0719.34002
[7] Samoilenko, A.M., Perestyuk, N.A.: Impulsive Differential Equations. World Scientific, Singapore (1995) · Zbl 0837.34003
[8] Choisy, M., Guegan, J.F., Rohani, P.: Dynamics of infectious diseases and pulse vaccination: teasing apart the embedded resonance effects. Physica D 223, 26–35 (2006) · Zbl 1110.34031 · doi:10.1016/j.physd.2006.08.006
[9] D’onofrio, A.: On pulse vaccination strategy in the SIR epidemic model with vertical transmission. Appl. Math. Lett. 18, 729–732 (2005) · Zbl 1064.92041 · doi:10.1016/j.aml.2004.05.012
[10] Gao, S., Chen, L., Nieto, J.J., Torres, A.: Analysis of a delayed epidemic model with pulse vaccination and saturation incidence. Vaccine 24, 6037–6045 (2006) · doi:10.1016/j.vaccine.2006.05.018
[11] George, R.K., Nandakumaran, A.K., Arapostathis, A.: A note on controllability of impulsive systems. J. Math. Anal. Appl. 241, 276–283 (2000) · Zbl 0965.93015 · doi:10.1006/jmaa.1999.6632
[12] Jiang, G., Lu, Q.: Impulsive state feedback control of a predator-prey model. J. Comput. Appl. Math. 200, 193–207 (2007) · Zbl 1134.49024 · doi:10.1016/j.cam.2005.12.013
[13] Nenov, S.: Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal. 36, 881–890 (1999) · Zbl 0941.49021 · doi:10.1016/S0362-546X(97)00627-5
[14] Sun, J., Zhang, Y.: Impulsive control of a nuclear spin generator. J. Comput. Appl. Math. 157, 235–242 (2003) · Zbl 1051.93086 · doi:10.1016/S0377-0427(03)00454-0
[15] Yang, Z.Y., Blanke, M.: A unified approach to controllability analysis for hybrid systems. Nonlinear Anal. Hybrid Syst. 1, 212–222 (2007) · Zbl 1117.93015 · doi:10.1016/j.nahs.2006.08.002
[16] Gurtin, M.E., Pipkin, A.C.: A general theory of heat conduction with finite wave speed. Arch. Ration. Mech. Anal. 31, 113–126 (1968) · Zbl 0164.12901 · doi:10.1007/BF00281373
[17] Nunziato, J.W.: On heat conduction in materials with memory. Q. Appl. Math. 29, 187–204 (1971) · Zbl 0227.73011
[18] Hernandez, E., Henriquez, H.R., Mckibben, M.A.: Existence results for abstract impulsive second-order neutral functional differential equations. Nonlinear Anal. 70, 2736–2751 (2009) · Zbl 1173.34049 · doi:10.1016/j.na.2008.03.062
[19] Hernandez, E., Balachandran, K., Annapoorani, N.: Existence results for a damped second order abstract functional differential equation with impulses. Math. Comput. Model. 50, 1583–1594 (2009) · Zbl 1185.34113 · doi:10.1016/j.mcm.2009.09.007
[20] Lin, Y., Tanaka, N.: Nonlinear abstract wave equations with strong damping. J. Math. Anal. Appl. 225, 46–61 (1998) · Zbl 0918.35094 · doi:10.1006/jmaa.1998.5999
[21] Webb, G.F.: Existence and asymptotic behaviour for a strongly damped nonlinear wave equations. Can. J. Math. 32, 631–643 (1980) · Zbl 0432.35046 · doi:10.4153/CJM-1980-049-5
[22] Balachandran, K., Anandhi, E.R.: Controllability of neutral functional integrodifferential infinite delay systems in Banach spaces. Taiwan. J. Math. 8, 689–702 (2004) · Zbl 1072.93004
[23] Balachandran, K., Dauer, J.P.: Controllability of nonlinear systems in Banach spaces: a survey. J. Optim. Theory Appl. 115, 7–28 (2002) · Zbl 1023.93010 · doi:10.1023/A:1019668728098
[24] Balachandran, K., Dauer, J.P., Balasubramaniam, P.: Controllability of nonlinear integrodifferential systems in Banach space. J. Optim. Theory Appl. 84, 83–91 (1995) · Zbl 0821.93010 · doi:10.1007/BF02191736
[25] Chang, Y.K., Li, W.T.: Controllability of second order differential and integrodifferential inclusions in Banach spaces. J. Optim. Theory Appl. 129, 77–87 (2006) · Zbl 1136.93005 · doi:10.1007/s10957-006-9044-5
[26] Fu, X.: Controllability of neutral functional differential systems in abstract spaces. Appl. Math. Comput. 141, 281–296 (2003) · Zbl 1175.93029 · doi:10.1016/S0096-3003(02)00253-9
[27] Liu, B.: Controllability of neutral functional differential and integrodifferential inclusions with infinite delay. J. Optim. Theory Appl. 123, 573–593 (2004) · Zbl 1175.93036 · doi:10.1007/s10957-004-5724-1
[28] Liu, B.: Controllability of impulsive neutral functional differential inclusions with infinite delay. Nonlinear Anal. 60, 1533–1552 (2005) · Zbl 1079.93008 · doi:10.1016/j.na.2004.11.022
[29] Li, M.L., Wang, M.S., Zhang, F.Q.: Controllability of impulsive functional differential systems in Banach spaces. Chaos Solitons Fractals 29, 175–181 (2006) · Zbl 1110.34057 · doi:10.1016/j.chaos.2005.08.041
[30] Chang, Y.K.: Controllability of impulsive functional differential systems with infinite delay in Banach spaces. Chaos Solitons Fractals 33, 1601–1609 (2007) · Zbl 1136.93006 · doi:10.1016/j.chaos.2006.03.006
[31] Park, J.Y., Balachandran, K., Arthi, G.: Controllability of impulsive neutral integrodifferential systems with infinite delay in Banach spaces. Nonlinear Anal. Hybrid Syst. 3, 184–194 (2009) · Zbl 1184.93020 · doi:10.1016/j.nahs.2008.12.002
[32] Fattorini, H.O.: Second Order Linear Differential Equations in Banach Spaces. North-Holland, Amsterdam (1985) · Zbl 0564.34063
[33] Travis, C.C., Webb, G.F.: Compactness, regularity and uniform continuity properties of strongly continuous cosine families. Houst. J. Math. 3, 555–567 (1977) · Zbl 0386.47024
[34] Kisynski, J.: On cosine operator functions and one parameter group of operators. Stud. Math. 49, 93–105 (1972)
[35] Travis, C.C., Webb, G.F.: Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung. 32, 76–96 (1978) · Zbl 0388.34039 · doi:10.1007/BF01902205
[36] Sadovskii, B.N.: On a fixed point principle. Funct. Anal. Appl. 1, 74–76 (1967) · Zbl 0165.49102
[37] Ntouyas, S.K., O’Regan, D.: Some remarks on controllability of evolution equations in Banach spaces. Electron. J. Differ. Equ. 79, 1–6 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.