×

Test-cost-sensitive attribute reduction on heterogeneous data for adaptive neighborhood model. (English) Zbl 1370.68250

Summary: Test-cost-sensitive attribute reduction is an important component in data mining applications, and plays a key role in cost-sensitive learning. Some previous approaches in test-cost-sensitive attribute reduction focus mainly on homogeneous datasets. When heterogeneous datasets must be taken into account, the previous approaches convert nominal attribute to numerical attribute directly. In this paper, we introduce an adaptive neighborhood model for heterogeneous attribute and deal with test-cost-sensitive attribute reduction problem. In the adaptive neighborhood model, the objects with numerical attributes are dealt with classical covering neighborhood, and the objects with nominal attributes are dealt with the overlap metric neighborhood. Compared with the previous approaches, the proposed model can avoid that objects with different values of nominal attribute are classified into one neighborhood. The number of inconsistent objects of a neighborhood reflects the discriminating capability of an attribute subset. With the adaptive neighborhood model, an inconsistent objects-based heuristic reduction algorithm is constructed. The proposed algorithm is compared with the \(\lambda \)-weighted heuristic reduction algorithm which nominal attribute is normalized. Experimental results demonstrate that the proposed algorithm is more effective and more practical significance than the \(\lambda \)-weighted heuristic reduction algorithm.

MSC:

68T05 Learning and adaptive systems in artificial intelligence
68T20 Problem solving in the context of artificial intelligence (heuristics, search strategies, etc.)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen TL, Martinez TR (1995) Np-completeness of minimum rule sets. In: Proceedings of the 10th international symposium on computer and information sciences, Citeseer · Zbl 1433.68458
[2] Bianchi FM, Livi L, Rizzi A, Sadeghian A (2014) A granular computing approach to the design of optimized graph classification systems. Soft Comput 18(2):393-412 · doi:10.1007/s00500-013-1065-z
[3] Dash M, Liu H (2003) Consistency-based search in feature selection. Artif Intell 151(1):155-176 · Zbl 1082.68791 · doi:10.1016/S0004-3702(03)00079-1
[4] Greiner R, Grove AJ, Roth D (2002) Learning cost-sensitive active classifiers. Artif Intell 139(2):137-174 · Zbl 1506.68094 · doi:10.1016/S0004-3702(02)00209-6
[5] Hu QH, Yu DR, Xie Z (2008a) Neighborhood classifiers. Expert Syst Appl 34(2):866-876
[6] Hu QH, Yu DR, Liu JF, Wu C (2008b) Neighborhood rough set based heterogeneous feature subset selection. Inf Sci 178(18):3577-3594 · Zbl 1154.68466
[7] Hunt EB, Marin J, Stone PJ (1966) Experiments in induction. Academic press, New York
[8] Ji S, Carin L (2007) Cost-sensitive feature acquisition and classification. Pattern Recognit 40:1474-1485 · Zbl 1113.68085 · doi:10.1016/j.patcog.2006.11.008
[9] Jia X, Liao W, Tang Z, Shang L (2013) Minimum cost attribute reduction in decision-theoretic rough set models. Inf Sci 219:151-167 · Zbl 1293.91049 · doi:10.1016/j.ins.2012.07.010
[10] Jing SY (2014) A hybrid genetic algorithm for feature subset selection in rough set theory. Soft Comput 18(7):1373-1382 · doi:10.1007/s00500-013-1150-3
[11] Lanzi P (1997) Fast feature selection with genetic algorithms: a filter approach. In: Evolutionary computation
[12] Lavrac N, Gamberger D, Turney P (1996) Cost-sensitive feature reduction applied to a hybrid genetic algorithm. In: Proceedings of the 7th international workshop on algorithmic learning theory, ALT · Zbl 1184.68407
[13] Li JH, Mei CL, Xu WH, Qian YH (2015) Concept learning via granular computing: a cognitive viewpoint. Inf Sci 298:447-467 · Zbl 1360.68688 · doi:10.1016/j.ins.2014.12.010
[14] Lin TY (1998) Granular computing on binary relations: data mining and neighborhood systems. In: Rough sets in knowledge discovery · Zbl 0927.68089
[15] Lin TY (2002) Granular computing on binary relations-analysis of conflict and Chinese wall security policy. Proc Rough Sets Curr Trends Comput 2475:296-299 · Zbl 1013.68582 · doi:10.1007/3-540-45813-1_38
[16] Lin TY (2003) Granular computing-structures, representations, and applications. Lect Notes Artif Intell 2639:16-24
[17] Ma LW (2012) On some types of neighborhood-related covering rough sets. Int J Approx Reason 53(6):901-911 · Zbl 1246.03068 · doi:10.1016/j.ijar.2012.03.004
[18] Miao DQ, Zhao Y, Yao YY, Li H, Xu F (2009) Relative reducts in consistent and inconsistent decision tables of the Pawlak rough set model. Inf Sci 179(24):4140-4150 · Zbl 1183.68608 · doi:10.1016/j.ins.2009.08.020
[19] Min F, Liu QH (2009) A hierarchical model for test-cost-sensitive decision systems. Inf Sci 179:2442-2452 · Zbl 1192.68651 · doi:10.1016/j.ins.2009.03.007
[20] Min F, Zhu W (2012) Attribute reduction of data with error ranges and test costs. Inf Sci 211:48-67 · Zbl 1250.68227 · doi:10.1016/j.ins.2012.04.031
[21] Min F, He HP, Qian YH, Zhu W (2011) Test-cost-sensitive attribute reduction. Inf Sci 181:4928-4942 · doi:10.1016/j.ins.2011.07.010
[22] Min F, Zhu W, Zhao H, Xu ZL (2014) Coser: cost-sensitive rough sets. http://grc.fjzs.edu.cn/ fmin/coser/
[23] Pawlak Z (1982) Rough sets. Int J Comput Inf Sci 11:341-356 · Zbl 0501.68053 · doi:10.1007/BF01001956
[24] Pawlak Z (1991) Rough sets: theoretical aspects of reasoning about data. Kluwer Academic Publishers, Boston · Zbl 0758.68054 · doi:10.1007/978-94-011-3534-4
[25] Pazzani M, Merz C, Ali PMK, Hume T, Brunk C (1994) Reducing misclassification costs. In: Proceedings of the 11th international conference of machine learning (ICML), Morgan Kaufmann · Zbl 1293.91049
[26] Qian J, Lv P, Yue X, Liu C, Jing Z (2015) Hierarchical attribute reduction algorithms for big data using mapreduce. Knowl Based Syst 73:18-31 · doi:10.1016/j.knosys.2014.09.001
[27] Sanchez MA, Castillo O, Castro JR, Melin P (2014) Fuzzy granular gravitational clustering algorithm for multivariate data. Inf Sci 279:498-511 · Zbl 1359.62278 · doi:10.1016/j.ins.2014.04.005
[28] Sanchez MA, Castillo O, Castro JR (2015) Information granule formation via the concept of uncertainty-based information with interval type-2 fuzzy sets representation and Takagi-Sugeno-Kang consequents optimized with cuckoo search. Appl Soft Comput 27:602-609 · doi:10.1016/j.asoc.2014.05.036
[29] Susmaga R (1999) Computation of minimal cost reducts. In: Ras Z, Skowron A (eds) Foundations of intelligent systems, vol 1609, pp 448-456
[30] Tseng TLB, Huang CC (2007) Rough set-based approach to feature selection in customer relationship management. Omega 35(4):365-383 · doi:10.1016/j.omega.2005.07.006
[31] Weiss Y, Elovici Y, Rokach L (2013) The cash algorithm-cost-sensitive attribute selection using histograms. Inf Sci 222:247-268 · doi:10.1016/j.ins.2011.01.035
[32] Yang XB, Yu DJ, Yang JY, Song XN (2009) Difference relation-based rough set and negative rules in incomplete information system. Int J Uncertain Fuzziness Knowl Based Syst 17(05):649-665 · Zbl 1185.68696 · doi:10.1142/S0218488509006194
[33] Yao YY (2000) Information tables with neighborhood semantics. In: AeroSense 2000, international society for optics and photonics
[34] Yao YY (2004) A partition model of granular computing. Lecture Notes in Computer Science, vol. 3100, pp 232-253 · Zbl 1104.68776
[35] Yao YY, Zhao Y (2008) Attribute reduction in decision-theoretic rough set models. Inf Sci 178(17):3356-3373 · Zbl 1156.68589 · doi:10.1016/j.ins.2008.05.010
[36] Yao YY, Zhong N (2002) Granular computing using information tables. In: Data mining, rough sets and granular computing, pp 102-124 · Zbl 1017.68053
[37] Zhang X, Mei C, Chen D, Li J (2013) Multi-confidence rule acquisition oriented attribute reduction of covering decision systems via combinatorial optimization. Knowl Based Syst 50:187-197 · doi:10.1016/j.knosys.2013.06.012
[38] Zhang X, Mei C, Chen D, Li J (2014) Multi-confidence rule acquisition and confidence-preserved attribute reduction in interval-valued decision systems. Int J Approx Reason 55(8):1787-1804 · Zbl 1433.68458 · doi:10.1016/j.ijar.2014.05.007
[39] Zhao H, Zhu W (2014) Optimal cost-sensitive granularization based on rough sets for variable costs. Knowl Based Syst 65:72-82 · doi:10.1016/j.knosys.2014.04.009
[40] Zhao H, Min F, Zhu W (2011) Test-cost-sensitive attribute reduction based on neighborhood rough set. In: Proceedings of the 2011 IEEE international conference on granular computing · Zbl 1183.68608
[41] Zhong N, Dong JZ, Ohsuga S (2001) Using rough sets with heuristics to feature selection. J Intell Inf Syst 16(3):199-214 · Zbl 0994.68149 · doi:10.1023/A:1011219601502
[42] Zhu W (2007) Generalized rough sets based on relations. Inf Sci 177(22):4997-5011 · Zbl 1129.68088 · doi:10.1016/j.ins.2007.05.037
[43] Zhu W, Wang F (2003) Reduction and axiomatization of covering generalized rough sets. Inf Sci 152(1):217-230 · Zbl 1069.68613 · doi:10.1016/S0020-0255(03)00056-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.