×

A distributed cooperative approach for unmanned aerial vehicle flocking. (English) Zbl 1412.93058

Summary: This paper studied the fixed-wing unmanned aerial vehicle (UAV) flocking problem from the biological point of view on the basis of the UAV model governed by the complete 12 variables. A weighted and undirected graph is applied to describe the time-variant metric interaction relationship among fixed-wing UAVs. Based on the proposed model and the communication mechanism, a distributed cooperation approach is designed to force groups of fixed-wing UAVs to collaboratively accomplish predefined tasks such as imitating a flock of birds. During the evolution process, four constraint conditions should be considered. The first one is that each UAV flies under bounded state variables, including attitude angle, velocity, and attitude angle speed. Second, one forward speed is necessary for the flight of each fixed-wing UAV. The third one concerns the aviation safety problem. Considering the real size of the fixed-wing UAV, the minimal distance between any two UAVs during the evolution process should be large enough to avoid collisions. The last constraint condition is that the lesser the adjustment time, the more likely it will be within a steady-state error margin. Four constraint conditions are skillfully taken as evaluation criteria to determine the coupling strength of the communication network. Numerical simulations are provided to validate the feasibility of the proposed approach for fixed-wing UAVs to implement the steady flight task of variable-altitude flocking and the steady flight task of invariable-altitude flocking.{
©2019 American Institute of Physics}

MSC:

93C85 Automated systems (robots, etc.) in control theory
05C90 Applications of graph theory

Software:

Boids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arenas, A.; Diaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys. Rep., 469, 93-153 (2008) · doi:10.1016/j.physrep.2008.09.002
[2] Liu, Z. X.; Guo, L., Synchronization of multi-agent systems without connectivity assumptions, Automatica, 45, 2744-2753 (2009) · Zbl 1192.93057 · doi:10.1016/j.automatica.2009.09.015
[3] Chapman, A. and Mesbahi, M., “UAV flocking with wind gusts: Adaptive topology and model reduction,” in Proceedings of the American Control Conference, June (IEEE, 2011), pp. 1045-1050.
[4] Saska, M., Vakula, J., and Preucil, L., “Swarms of micro aerial vehicles stabilized under a visual relative localization,” in IEEE International Conference on Robotics and Automation, May (IEEE, 2014), pp. 3570-3575.
[5] Reynolds, C. W., Flocks, herds, and schools: A distributed behavioral model, Comput. Graph., 21, 4, 25-34 (1987) · doi:10.1145/37402
[6] Vicsek, T.; Czirook, A.; Ben-Jacob, E.; Cohen, O.; Shochet, I., Novel type of phase transitions in a system of self-driven particles, Phys. Rev. Lett., 75, 1226-1229 (1995) · doi:10.1103/PhysRevLett.75.1226
[7] McCune, R., Purta, R., Dobski, M., and Jaworski, A., “Investigations of DDDAS for command and control of UAV swarms with agent-based modeling,” in Proceedings of the Winter Simulations Conference (IEEE, 2013), pp. 1467-1478.
[8] Buscarino, A.; Fortuna, L.; Frasca, M.; Rizzo, A., Dynamical network interactions in distributed control of robots, Chaos, 16, 015116 (2006) · Zbl 1144.37329 · doi:10.1063/1.2166492
[9] Ben-Asher, Y.; Feldman, S.; Gurfil, P.; Feldman, M., Distributed decision and control for cooperative uavs using ad hoc communication, IEEE Trans. Control Syst. Technol., 16, 3, 511-516 (2008) · doi:10.1109/TCST.2007.906314
[10] Hauert, S., Leven, S., Varga, M., and Ruini, F., “Reynolds flocking in reality with fixed-wing robots: Communication range vs maximum turning rate,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, September (IEEE, 2011), pp. 5015-5020.
[11] Chen, C.; Chen, G.; Guo, L., Consensus of flocks under M-nearest neighbor rules, J. Syst. Sci. Complex., 28, 1-15 (2015) · Zbl 1310.93005 · doi:10.1007/s11424-015-3048-x
[12] Bayezit, I.; Fidan, B., Distributed cohesive motion control of flight vehicle formations, IEEE Trans. Ind. Electron., 60, 12, 5763-5772 (2013) · doi:10.1109/TIE.2012.2235391
[13] Sun, Y.; Li, W.; Zhao, D., Realization of consensus of multi-agent systems with stochastically mixed interactions, Chaos, 26, 073112 (2016) · Zbl 1375.93137 · doi:10.1063/1.4958927
[14] Jia, Y., “Swarming coordination of multiple unmanned aerial vehicles in three-dimensional space,” in AIAA Modeling and Simulation Technologies Conference (AIAA, 2016).
[15] Hung, S. M.; Givigi, S. N., A q-learning approach to flocking with UAVs in a stochastic environment, IEEE Trans. Cybern., 47, 1, 186-197 (2017) · doi:10.1109/TCYB.2015.2509646
[16] Corner, J. J. and Lamont, G. B., “Parallel simulation of UAV swarm scenarios,” in Proceedings of the Winter Simulation Conference (IEEE, 2004), pp. 363-371.
[17] Mendez, L., Givigi, S. N., Schwartz, H. M., Beaulieu, A., Pieris, G., and Fusina, G., “Validation of swarms of robots: Theory and experimental results,” in 7th International Conference on System of Systems Engineering (IEEE, Genoa, 2012), pp. 332-337.
[18] Ciarletta, L., Guenard, A., Presse, Y., Galtier, V., Song, Y. Q., Ponsart, J. C., Aberkane, S., and Theilliol, D., “Simulation and platform tools to develop safe flock of UAVS: A CPS application-driven research,” in International Conference on Unmanned Aircraft Systems, May (IEEE, 2014), pp. 95-102.
[19] Gil, A. E.; Passino, K. M.; Ganapathy, S.; Sparks, A., Cooperative task scheduling for networked uninhabited air vehicles, IEEE Trans. Aerosp. Electron. Syst., 4, 2, 561-581 (2008) · doi:10.1109/TAES.2008.4560207
[20] Joelianto, E. and Sagala, A., “Swarm tracking control for flocking of a multi-agent system,” in IEEE Conference on Control, Systems, & Industrial Informatics (IEEE, Bandung, 2012), pp. 75-80.
[21] Vasarhelyi, G., Viragh, C., Somorjai, G., Tarcai, N., Szorenyi, T., Nepusz, T., and Vicsek, T., “Outdoor flocking and formation flight with autonomous aerial robots,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, September (IEEE, 2014), pp. 3866-3873.
[22] Jing, G.; Zheng, Y.; Wang, L., Flocking of multi-agent systems with multiple groups, Int. J. Control, 87, 2573-2582 (2014) · Zbl 1308.93014 · doi:10.1080/00207179.2014.935485
[23] Saska, M., “MAV-swarms: Unmanned aerial vehicles stabilized along a given path using onboard relative localization,” in International Conference on Unmanned Aircraft Systems, June (IEEE, 2015), pp. 894-903.
[24] Cucker, F.; Smale, S., Emergent behavior in flocks, IEEE Trans. Autom. Control, 52, 5, 852-862 (2007) · Zbl 1366.91116 · doi:10.1109/TAC.2007.895842
[25] Olfati-Saber, R., Flocking for multi-agent dynamic systems: Algorithms and theory, IEEE Trans. Autom. Control, 51, 3, 401-420 (2006) · Zbl 1366.93391 · doi:10.1109/TAC.2005.864190
[26] Su, H. S.; Wang, X. F.; Chen, G. R., A connectivity-preserving flocking algorithm for multi-agent systems based only on position measurements, Int. J. Control, 82, 7, 1334-1343 (2009) · Zbl 1168.93311 · doi:10.1080/00207170802549578
[27] Vanualailai, J., Sharan, A., and Sharma, B., “A swarm model for planar formations of multiple autonomous unmanned aerial vehicles,” in IEEE International Symposium on Intelligent Control, August (IEEE, Hyderabad, 2013), pp. 206-211.
[28] Beard, R. W.; McLain, T. W.; Nelson, D. B.; Kingston, D.; Johanson, D., Decentralized cooperative aerial surveillance using fixed-wing miniature UAVs, Proc. IEEE, 94, 7, 1306-1324 (2006) · doi:10.1109/JPROC.2006.876930
[29] Jadbabaie, A.; Lin, J.; Morse, A. S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE Trans. Autom. Control, 48, 6, 988-1001 (2003) · Zbl 1364.93514 · doi:10.1109/TAC.2003.812781
[30] Jia, Y.; Zhang, W., Distributed adaptive flocking of robotic fish system with a leader of bounded unknown input, Int. J. Control Autom. Syst., 12, 5, 1049-1058 (2014) · doi:10.1007/s12555-013-0518-6
[31] Wu, S., Flight Control System (2013)
[32] Wang, L.; Chen, G., Synchronization of multi-agent systems with metric-topological interactions, Chaos, 26, 094809 (2016) · Zbl 1382.93005 · doi:10.1063/1.4955086
[33] Tanner, H. G.; Jadbabaie, A.; Pappas, G. J., Flocking in fixed and switching networks, IEEE Trans. Autom. Control, 52, 5, 863-868 (2007) · Zbl 1366.93414 · doi:10.1109/TAC.2007.895948
[34] Khalil, H. K., Nonlinear Systems (2002)
[35] Jia, Y.; Wang, L., Leader-follower flocking of multiple robotic fish, IEEE/ASME Trans. Mechatron., 20, 3, 1372-1383 (2015) · doi:10.1109/TMECH.2014.2337375
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.