×

Analytic solutions and triality theory for nonconvex and nonsmooth variational problems with applications. (English) Zbl 0983.49024

From author’s Problems and motivations: “We are interested in the general analytic solution of the nonconvex variational problem \[ \min P(u)=\int_{I}W(\Lambda (u)) dx- \int_{I}fu dx, \quad u\in {\mathcal U}_{a},\tag \(\mathcal P\) \] where \(I\subset R\) is an open interval, \(f(x)\) is a given function, \(\Lambda \) is a nonlinear operator, and \(W(\varepsilon)\in {\mathcal L}(I)\) is a piecewise Gâteaux differentiable function of \(\varepsilon =\Lambda (u);\) \({\mathcal U}_{a}\) is a closed convex subspace of a reflexive Banach space \( {\mathcal U}.\) Duality theory for general fully nonlinear, nonsmooth variational problems was originally studied by Gao and Strang for \(n\)-dimensional finite deformation systems. In order to recover the duality gap between the primal and dual variational problems, a so-called complementary gap function was discovered. A general complementary variational principle for fully nonlinear, nonsmooth systems was proposed. Applications of this general theory have been given in a series of publications on finite deformation mechanics. An interesting triality theory was proposed and a so-called nonlinear dual transformation method has been developed for solving general nonconvex variational/boundary value problems. In the present paper, this nonlinear dual transformation method is generalized for obtaining the general analytic solutions of the nonconvex, nonsmooth variational problem \(({\mathcal P})\)”.

MSC:

49N15 Duality theory (optimization)
49J45 Methods involving semicontinuity and convergence; relaxation
49J20 Existence theories for optimal control problems involving partial differential equations
58E30 Variational principles in infinite-dimensional spaces
74G65 Energy minimization in equilibrium problems in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381 (1973) · Zbl 0273.49063
[2] J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984.; J.P. Aubin, I. Ekeland, Applied Nonlinear Analysis, Wiley, New York, 1984. · Zbl 0641.47066
[3] Auchmuty, G., Duality for non-convex variational principles, J. Differential Equations, 50, 80-145 (1983) · Zbl 0533.49007
[4] G. Auchmuty, Dual variational principles for eigenvalue problems, Proc. Symp. Pure Math. 45 (1986) (Part 1) 55-71.; G. Auchmuty, Dual variational principles for eigenvalue problems, Proc. Symp. Pure Math. 45 (1986) (Part 1) 55-71. · Zbl 0594.49028
[5] Ball, J. M.; James, R. D., Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal., 100, 13-52 (1987) · Zbl 0629.49020
[6] K.E. Brenan, S.L. Camplell, L.R. Pelzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.; K.E. Brenan, S.L. Camplell, L.R. Pelzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, SIAM, Philadelphia, 1996.
[7] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.; M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996. · Zbl 0951.74002
[8] Bubner, N., Landau-Ginzburg model for a deformation-driven experiment on shape memory alloys, Continuum Mech. Thermodyn., 8, 293-308 (1996) · Zbl 0925.65220
[9] Carr, J.; Gurtin, M. E.; Slemrod, M., Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal., 86, 317-351 (1984) · Zbl 0564.76075
[10] Chang, K. C., Variational methods for non-differentiable functions and their applications to partial differential equations, J. Math. Anal. Appl., 80, 102-129 (1981) · Zbl 0487.49027
[11] S.-N. Chow, J.K. Hale, Methods of Bifurcation Theory, Grundlehren, vol. 251, Springer, New York, 1982.; S.-N. Chow, J.K. Hale, Methods of Bifurcation Theory, Grundlehren, vol. 251, Springer, New York, 1982.
[12] Clarke, F. H., A classical variational principle for periodic Hamiltonian trajectories, Proc. AMS, 76, 186-189 (1979) · Zbl 0434.70022
[13] D. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989.; D. Dacorogna, Direct Methods in the Calculus of Variations, Springer, Berlin, 1989. · Zbl 0703.49001
[14] V.F. Dem’yanov, G.E. Stavroulakis, L.N. Polyakova, P.D. Panagiotopoulos, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Kluwer Academic Publishers, Boston, 1996.; V.F. Dem’yanov, G.E. Stavroulakis, L.N. Polyakova, P.D. Panagiotopoulos, Quasidifferentiability and Nonsmooth Modelling in Mechanics, Engineering and Economics, Kluwer Academic Publishers, Boston, 1996. · Zbl 1076.49500
[15] Ekeland, I., On the variational principle, J. Math. Anal. Appl., 47, 324-353 (1974) · Zbl 0286.49015
[16] I. Ekeland, R. Temam, Convex Analysis and Variational Problems, Dunod, Paris, 1976.; I. Ekeland, R. Temam, Convex Analysis and Variational Problems, Dunod, Paris, 1976. · Zbl 0322.90046
[17] Ericksen, J. L., Equilibrium of bars, J. Elasticity, 5, 191-202 (1975) · Zbl 0324.73067
[18] F. Falk, Elastic phase transitions and nonconvex energy functions, in: K.H. Hoffmann, J. Sprekels (Eds.), Free Boundary Problems: Theory and Applications I, Longman, London, 1990.; F. Falk, Elastic phase transitions and nonconvex energy functions, in: K.H. Hoffmann, J. Sprekels (Eds.), Free Boundary Problems: Theory and Applications I, Longman, London, 1990.
[19] Fonseca, I., The lower quasiconvex envelope of the stored energy function for an elastic crystal, J. Math. Pure Appl., 67, 175-195 (1988) · Zbl 0718.73075
[20] A. Friedman, Variational Principles and Free-Boundary Problems, Springer, New York, 1993.; A. Friedman, Variational Principles and Free-Boundary Problems, Springer, New York, 1993.
[21] Fried, E.; Gurtin, M. E., Semi-quadratic variational problems for multiphase equilibria, Quart. Appl. Math., 54, 1, 73-84 (1996) · Zbl 0896.73077
[22] Gao, D. Y., Dynamically loaded rigid-plastic analysis under large deformation, Quart. Appl. Math., 48, 731-739 (1990) · Zbl 0716.73039
[23] Gao, D. Y., Global extremum criteria for finite elasticity, ZAMP, 43, 924-937 (1992) · Zbl 0756.73035
[24] Gao, D. Y., Stability and extremum principles for post yield analysis of finite plasticity, Acta Mech. Sin., 10, 311-325 (1994) · Zbl 0874.73027
[25] Gao, D. Y., Duality theory in nonlinear buckling analysis for von Karman equations, Stud. Appl. Math., 94, 423-444 (1995) · Zbl 0832.73027
[26] D.Y. Gao, Dual extremum principles in finite deformation theory with applications in post-buckling analysis of nonlinear beam model, Appl. Mech. Rev. ASME 50 (Part 2) (1997) S64-S71.; D.Y. Gao, Dual extremum principles in finite deformation theory with applications in post-buckling analysis of nonlinear beam model, Appl. Mech. Rev. ASME 50 (Part 2) (1997) S64-S71.
[27] Gao, D. Y., Bi-complementarity and duality: a framework in nonlinear equilibria with applications to contact problem of elastoplastic beam theory, J. Math. Anal. Appl., 221, 672-697 (1998) · Zbl 0971.74059
[28] D.Y. Gao, Minimax and triality theory in nonsmooth variational problems, in: Fukushima, L. Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Pub., Boston, 1998, pp. 161-179.; D.Y. Gao, Minimax and triality theory in nonsmooth variational problems, in: Fukushima, L. Qi (Eds.), Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods, Kluwer Academic Pub., Boston, 1998, pp. 161-179.
[29] Gao, D. Y., Duality, triality and complementary extremum principles in nonconvex parametric variational problems with applications, IMA J. Appl. Math., 61, 199-235 (1998) · Zbl 0923.49017
[30] D.Y. Gao, Duality in nonconvex finite deformation theory: a survey and unified approach, in: R. Gilbert, P.D. Panagiotopoulos, P. Pardalos (Eds.), From Convexity to Nonconvexity, A Volume dedicated to the memory of Professor Gaetano Fichera, Kluwer Academic Publishers, Boston, 1999, to appear.; D.Y. Gao, Duality in nonconvex finite deformation theory: a survey and unified approach, in: R. Gilbert, P.D. Panagiotopoulos, P. Pardalos (Eds.), From Convexity to Nonconvexity, A Volume dedicated to the memory of Professor Gaetano Fichera, Kluwer Academic Publishers, Boston, 1999, to appear.
[31] D.Y. Gao, Duality (Mathematics), in: John Webster (Ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 6, Wiley, New York, 1999, pp. 68-77.; D.Y. Gao, Duality (Mathematics), in: John Webster (Ed.), Wiley Encyclopedia of Electrical and Electronics Engineering, vol. 6, Wiley, New York, 1999, pp. 68-77.
[32] D.Y. Gao, Finite deformed beam models and triality theory in dynamical post-buckling analysis, Int. J. Non-Linear Mech. 34 (1999).; D.Y. Gao, Finite deformed beam models and triality theory in dynamical post-buckling analysis, Int. J. Non-Linear Mech. 34 (1999).
[33] D.Y. Gao, Analytic solutions in finite deformation elastoplasticity, Meccanica 34 (1999).; D.Y. Gao, Analytic solutions in finite deformation elastoplasticity, Meccanica 34 (1999).
[34] D.Y. Gao, Duality Principles in Nonconvex Systems: Theory, Methods and Applications, Kluwer Academic Publishers, Boston, to be published.; D.Y. Gao, Duality Principles in Nonconvex Systems: Theory, Methods and Applications, Kluwer Academic Publishers, Boston, to be published. · Zbl 0940.49001
[35] Gao, D. Y.; Strang, G., Geometric nonlinearity: Potential energy, complementary energy, and the gap function, Quart. Appl. Math., 47, 3, 487-504 (1989) · Zbl 0691.73012
[36] Gao, D. Y.; Strang, G., Dual extremum principles in finite deformation elastoplasitc analysis, Acta Appl. Math., 17, 257-267 (1989) · Zbl 0732.73026
[37] Gao, D. Y.; Yang, W. H., Multi-duality in minimal surface type problems, Stud. Appl. Math., 95, 127-146 (1995) · Zbl 0833.49023
[38] R.D. James, D. Kinderlehrer, Theory of diffusionless phase transitions, in: M. Rascle et al. (Eds.), Lecture Notes in Physics, vol. 344, Springer, Berlin, 1989, pp. 147-176.; R.D. James, D. Kinderlehrer, Theory of diffusionless phase transitions, in: M. Rascle et al. (Eds.), Lecture Notes in Physics, vol. 344, Springer, Berlin, 1989, pp. 147-176. · Zbl 0991.74504
[39] Kibble, T. W.B., Phase transitions and topological defects in the early universe, Aust. J. Phys., 50, 697-722 (1997) · Zbl 1018.83510
[40] Kohn, R. V., The relaxation of a double-well energy, Continuum Mech. Thermodyn., 3, 193-236 (1991) · Zbl 0825.73029
[41] K.A. Lurie, A.V. Cherkaev, On a certain variational problem of phase equilibrium, in: J.M. Ball (Ed.), Material Instabilities in Continuum Mechanics, Oxford University Press, Oxford, 1988, pp. 257-268.; K.A. Lurie, A.V. Cherkaev, On a certain variational problem of phase equilibrium, in: J.M. Ball (Ed.), Material Instabilities in Continuum Mechanics, Oxford University Press, Oxford, 1988, pp. 257-268. · Zbl 0850.93486
[42] J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, Springer, Berlin, 1995.; J. Marsden, T. Ratiu, Introduction to Mechanics and Symmetry, Springer, Berlin, 1995.
[43] J.T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1986.; J.T. Oden, Qualitative Methods in Nonlinear Mechanics, Prentice-Hall, Englewood Cliffs, NJ, 1986. · Zbl 0578.70001
[44] J.T. Oden, J.N. Reddy, Variational Methods in Theoretical Mechanics, Springer, Berlin, 1983.; J.T. Oden, J.N. Reddy, Variational Methods in Theoretical Mechanics, Springer, Berlin, 1983. · Zbl 0518.73010
[45] R.W. Ogden, Non-Linear Elastic Deformations, Ellis Horwood, Chichester, 1984.; R.W. Ogden, Non-Linear Elastic Deformations, Ellis Horwood, Chichester, 1984. · Zbl 0541.73044
[46] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985.; P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications, Birkhäuser, Boston, 1985. · Zbl 0579.73014
[47] P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986.; P.H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, CBMS Regional Conference Series Math., vol. 65, Amer. Math. Soc., Providence, RI, 1986. · Zbl 0609.58002
[48] Rockafellar, R. T., Duality and stability in extremum problems involving convex functions, Pacific J. Math., 21, 167-187 (1967) · Zbl 0154.44902
[49] R.T. Rockafellar, R.J.B. Wets, Variational Analysis, Springer, Berlin, New York, 1998, 733 pp.; R.T. Rockafellar, R.J.B. Wets, Variational Analysis, Springer, Berlin, New York, 1998, 733 pp. · Zbl 0888.49001
[50] Rogers, R. C.; Truskinovsky, L., Discretization and hysteresis, Physica B, 233, 370-375 (1997)
[51] J.S. Rowlinson, Translation of J.D. van der Waals’, “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, J. Statist. Phys. 20 1979 197-244.; J.S. Rowlinson, Translation of J.D. van der Waals’, “The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density”, J. Statist. Phys. 20 1979 197-244.
[52] M.J. Sewell, Maximum and Minimum Principles, Cambridge University Press, Cambridge, 1987.; M.J. Sewell, Maximum and Minimum Principles, Cambridge University Press, Cambridge, 1987. · Zbl 0652.49001
[53] J.H. Silverman, J. Tate, Rational Points on Elliptic Curves, Springer, Berlin, 1992.; J.H. Silverman, J. Tate, Rational Points on Elliptic Curves, Springer, Berlin, 1992. · Zbl 0752.14034
[54] G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, 1986.; G. Strang, Introduction to Applied Mathematics, Wellesley-Cambridge Press, Wellesley, 1986. · Zbl 0618.00015
[55] M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1996.; M. Struwe, Variational Methods, Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems, Springer, Berlin, 1996. · Zbl 0864.49001
[56] A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincare, Analyse Non Lineaire 3 (1986) 77-109.; A. Szulkin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincare, Analyse Non Lineaire 3 (1986) 77-109. · Zbl 0612.58011
[57] B. Tabarrok, F.P.J. Rimrott, Variational Methods and Complementary Formulations in Dynamics, Kluwer Academic Publishers, Dordrecht, 1994.; B. Tabarrok, F.P.J. Rimrott, Variational Methods and Complementary Formulations in Dynamics, Kluwer Academic Publishers, Dordrecht, 1994. · Zbl 0845.70001
[58] Temam, R.; Strang, G., Duality and relaxation in variational problems of plasticity, J. Mecanique, 19, 493-527 (1980) · Zbl 0465.73033
[59] Toland, J. F., Duality in nonconvex optimization, J. Math. Anal. Appl., 66, 399-415 (1978) · Zbl 0403.90066
[60] Toland, J. F., A duality principle for non-convex optimization and the calculus of variations, Arch. Rat. Mech. Anal., 71, 41-61 (1979) · Zbl 0411.49012
[61] E. Tonti, A mathematical model for physical theories, Fis. Mat. Ser. VIII LII (1972).; E. Tonti, A mathematical model for physical theories, Fis. Mat. Ser. VIII LII (1972). · Zbl 0256.70012
[62] C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, second edition, Springer, Berlin, 1992.; C. Truesdell, W. Noll, The Non-linear Field Theories of Mechanics, second edition, Springer, Berlin, 1992. · Zbl 0779.73004
[63] M. Walk, Theory of Duality in Mathematical Programming, Springer-Verlag, Wien, New York, 1989.; M. Walk, Theory of Duality in Mathematical Programming, Springer-Verlag, Wien, New York, 1989. · Zbl 0679.90028
[64] Willem, M., Remarks on the dual least action principle, Z. Anal. Anwendungen, 1, 85-90 (1982) · Zbl 0528.58006
[65] S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997.; S.J. Wright, Primal-Dual Interior-Point Methods, SIAM, Philadelphia, 1997. · Zbl 0863.65031
[66] Yau, S. T.; Gao, D. Y., Obstacle problem for von Karman equations, Adv. Appl. Math., 13, 123-141 (1992) · Zbl 0766.35087
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.