×

A triangular finite element with local remeshing for the large strain analysis of axisymmetric solids. (English) Zbl 1194.74376

Summary: In this work, a three-node triangular finite element with two degrees of freedom per node for the large strain elasto-plastic analysis of axisymmetric solids is presented. The formulation resorts to the adjacent elements to obtain a quadratic interpolation of the geometry over a patch of four elements from which an average deformation gradient is defined. Thus, the element formulation falls within the framework of assumed strain elements or more precisely of \(\mathbf F\)-bar type formulations. The in-plane behavior of the element is similar to the linear strain triangle, but without the drawbacks of the quadratic triangle, e.g. contact or distortion sensitivity. The element does not suffer of volumetric locking in problems with isochoric plastic flow and the implementation is simple. It has been implemented in a finite element code with explicit time integration of the momentum equations and tools that allow the simulation of industrial processes. The widely accepted multiplicative decomposition of the deformation gradient in elastic and plastic components is adopted here. An isotropic material with non-linear isotropic hardening has been considered. Two versions of the element have been implemented based on a Total and an Updated Lagrangian Formulation, respectively. Some approximations have been considered in the latter formulation aimed to reduce the number of operations in order to increase numerical efficiency. To consider bulk forming, with large geometric changes, an automatic local remeshing strategy has been developed. Several examples are considered to assess the element performance with and without remeshing.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
74C15 Large-strain, rate-independent theories of plasticity (including nonlinear plasticity)

Software:

GiD; ABAQUS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Simo, J. C.; Rifai, M. S., A class of mixed assumed strain methods and the method of incompatible modes, Int. J. Numer. Methods Engrg., 29, 1595-1638 (1990) · Zbl 0724.73222
[2] César de Sá, J. M.A.; Natal Jorge, R. M., New enhanced strain element for incompressible problems, Int. J. Numer. Methods Engrg., 44, 229-248 (1999) · Zbl 0937.74062
[3] Armero, F., On the locking and stability of finite elements in finite deformation plane strain problems, Comput. Struct., 75, 261-290 (2000)
[4] Adam, L.; Ponthot, J. P., Thermomechanical modeling of metals at finite strains: first and mixed order finite elements, Int. J. Solids Struct., 42, 5615-5655 (2005) · Zbl 1113.74418
[5] Felippa, C. A., A study of optimal membrane triangles with drilling freedoms, Comput. Methods Appl. Mech. Engrg., 192, 2125-2168 (2003) · Zbl 1140.74551
[6] Mahnken, R.; Caylak, I.; Laschet, G., Two mixed finite element formulations with area bubble functions for tetrahedral elements, Comput. Methods Appl. Mech. Engrg., 197, 1147-1165 (2008) · Zbl 1169.74619
[7] Zienkiewicz, O. C.; Rojek, J.; Taylor, R. L.; Pastor, M., Triangles and tetrahedra in explicit dynamic codes for solids, Int. J. Numer. Methods Engrg., 43, 565-583 (1998) · Zbl 0939.74073
[8] Cervera, M.; Chiumenti, M.; Valverde, Q., Agelet de Saracibar C Mixed linear/linear simplicial elements for incompressible elasticity and plasticity, Comput. Methods Appl. Mech. Engrg., 192, 5249-5263 (2003) · Zbl 1054.74050
[9] Rojek, J.; Oñate, E.; Taylor, R. L., CBS-based stabilization in explicit solid dynamic, Int. J. Numer. Methods Engrg., 66, 1547-1568 (2006) · Zbl 1110.74856
[10] Souza Neto, E. A.; Pires, F. M.A.; Owen, D. R.J., A new F-bar based method for linear triangles and tetrahedra in the finite strain analysis of nearly incompressible solids, (Oñate, E.; Owen, D. R.J., Computational Plasticity COMPLAS 2003 (2003), CIMNE: CIMNE Barcelona, Spain) · Zbl 1179.74159
[11] Flores, F. G., A two-dimensional linear assumed strain triangular element for finite deformation analysis, ASME J. Appl. Mech., 73, 6, 970-976 (2006) · Zbl 1111.74405
[12] Bushnell, D.; Almroth, B. O.; Brogan, F., Finite difference energy methods for nonlinear shell analysis, Comput. Struct., 1, 361-387 (1971)
[13] Nay, R. A.; Utku, S., An alternative to the finite element method, Variational Methods Engrg., 1, 3, 62-74 (1972) · Zbl 0312.73087
[14] Barnes MR. Form Finding and Analysis of Tension Space Structure by Dynamic Relaxation, Ph.D. Thesis, Department of Civil Engineering, The City University, London, 1977.; Barnes MR. Form Finding and Analysis of Tension Space Structure by Dynamic Relaxation, Ph.D. Thesis, Department of Civil Engineering, The City University, London, 1977.
[15] Flores, F. G.; Estrada, C., A rotation-free thin shell quadrilateral, Comput. Methods Appl. Mech. Engrg., 196, 2631-2646 (2007) · Zbl 1173.74417
[16] Eterovic, A. L.; Bathe, K. J., A hyperelastic-based large strain elasto-plastic constitutive formulation with combined isotropic-kinematic hardening using logarithmic stress and strain measures, Int. J. Numer. Methods Engrg., 30, 1099-1115 (1990) · Zbl 0714.73035
[17] García Garino CG. A Numerical Model for Large Strain Analysis of Elasto-plastic Solids (in Spanish), Ph.D. Thesis, Tech. Univ. of Catalonia, Spain, 1993.; García Garino CG. A Numerical Model for Large Strain Analysis of Elasto-plastic Solids (in Spanish), Ph.D. Thesis, Tech. Univ. of Catalonia, Spain, 1993.
[18] Crisfield, M. A., Non-linear Finite Element Analysis of Solids and Structures II: Advanced Topics (1997), John Wiley & Sons Ltd. · Zbl 0890.73001
[19] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer-Verlag Inc.: Springer-Verlag Inc. New York · Zbl 0934.74003
[20] Khan, A. S.; Cheng, P., An anisotropic elastic-plastic constitutive model for single and polycrystalline metals I, Int. J. Plasticity, 12, 147-162 (1996) · Zbl 0858.73023
[21] Khan, A. S.; Cheng, P., An anisotropic elastic-plastic constitutive model for single and polycrystalline metals II, Int. J. Plasticity, 14, 209-226 (1998) · Zbl 0917.73020
[22] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part I: the recovery technique, Int. J. Numer. Methods Engrg., 33, 1331-1364 (1992) · Zbl 0769.73084
[23] Zienkiewicz, O. C.; Zhu, J. Z., The superconvergent patch recovery and a posteriori error estimates. Part II: error estimates and adaptativity, Int. J. Numer. Methods Engrg., 33, 1365-1382 (1992) · Zbl 0769.73085
[24] Wiberg, N. E.; Abdulwahab, F.; Ziukas, S., Enhanced superconvergent patch recovery incorporating equilibrium and boundary conditions, Int. J. Numer. Methods Engrg., 37, 3417-3440 (1994) · Zbl 0825.73777
[25] Labbé, P.; Garon, A., A robust implementation of Zienkiewicz and Zhu’s local patch recovery method, Commun. Appl. Numer. Methods, 11, 427-434 (1995) · Zbl 0823.65105
[26] Yazdani, A. A.; Gakwaya, A.; Dhatt, G., An improved superconvergent patch recovery technique for the axisymmetrical problems, Comput. Struct., 66, 799-821 (1998) · Zbl 0933.74067
[27] Zienkiewicz, O. C.; Boroomand, B.; Zhu, J. Z., Recovery procedures in error estimation and adaptivity, part I: adaptivity in linear problems, Comput. Methods Appl. Mech. Engrg., 176, 111-125 (1999) · Zbl 0955.74069
[28] Bugeda, G., A new adaptive remeshing scheme based on the sensitivity analysis of the SPR pointwise error estimation, Comput. Methods Appl. Mech. Engrg., 195, 462-478 (2006) · Zbl 1193.74172
[29] Boroomand, B.; Zienkiewicz, O. C., Recovery procedures in error estimation and adaptivity, part II: adaptivity in nonlinear problems of elasto-plasticity behaviour, Comput. Methods Appl. Mech. Engrg., 176, 127-146 (1999) · Zbl 0955.74070
[30] Gu, H.; Kitamura, M., A modified recovery procedure to improve the accuracy of stress at central area of bilinear quadrilateral element, J. Soc. Naval Architects Jpn., 188, 486-496 (2000)
[31] Gu, H.; Zong, Z.; Hung, K. C., A modified superconvergent patch recovery method and its application to large deformation problems, Finite Elem. Anal. Des., 40, 665-687 (2004)
[32] Stampack©, A General Finite Element System for Sheet Stamping and Forming Problems, v7.0.0, Quantech ATZ, Barcelona, Spain, 2007. <www.quantech.es>.; Stampack©, A General Finite Element System for Sheet Stamping and Forming Problems, v7.0.0, Quantech ATZ, Barcelona, Spain, 2007. <www.quantech.es>.
[33] W.B. Castelló. Large Strain Analysis of Bidimensional Solids Using an Assumed Strain Triangle (in Spanish), MSc. Thesis, Nac. Univ. of Córdoba, Argentina, 2005.; W.B. Castelló. Large Strain Analysis of Bidimensional Solids Using an Assumed Strain Triangle (in Spanish), MSc. Thesis, Nac. Univ. of Córdoba, Argentina, 2005.
[34] GiD©, The Personal Pre and Post Processor, version 8.1, CIMNE, Barcelona, Spain, 2007. <www.gid.cimne.upc.es>.; GiD©, The Personal Pre and Post Processor, version 8.1, CIMNE, Barcelona, Spain, 2007. <www.gid.cimne.upc.es>.
[35] Akin, J., Finite Element Analysis with Error Estimators (2005), Butterworth-Heinemann: Butterworth-Heinemann London · Zbl 1086.65104
[36] Abaqus©, Student Edn., version 6.6.2, Simulia, 2006. www.abaqus.com.; Abaqus©, Student Edn., version 6.6.2, Simulia, 2006. www.abaqus.com.
[37] Beltran, F.; Goicolea, J. M., Large strain plastic collapse: a comparison of explicit and implicit solutions, (Owen, D. R.J.; Hinton, E.; Oñate, E., International Conference on Computational Plasticity (COMPLAS 2), vol. 2 (1989), Pineridge Press: Pineridge Press Barcelona, Spain), 1125-1136
[38] Rosa, P. A.R.; Baptista, R. M.S. O.; Rodrigues, J. M.C.; Martins, P. A.F., External inversion of thin-walled tubes using a die (in Portuguese), Revista Iberoamericana de Ingeniería Mecánica, 8, 79-90 (2004)
[39] Taylor, L. M.; Becker, E. B., Some computational aspects of large deformation rate dependent plasticity problems, Comput. Methods Appl. Mech. Engrg., 41, 251-278 (1983) · Zbl 0509.73046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.