×

Over-rotation intervals of bimodal interval maps. (English) Zbl 1468.37039

Summary: We describe all bimodal over-twist patterns and give an algorithm allowing one to determine what the left endpoint of the over-rotation interval of a given bimodal map is. We then define a new class of polymodal interval maps called well behaved and generalize onto them the above results.

MSC:

37E05 Dynamical systems involving maps of the interval
37E15 Combinatorial dynamics (types of periodic orbits)
37E45 Rotation numbers and vectors
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Adler, R.; Konheim, A.; McAndrew, M., Topological entropy, Trans. Am. Math. Soc., 114, 2, 309-319 (1965) · Zbl 0127.13102 · doi:10.1090/S0002-9947-1965-0175106-9
[2] Alseda, L.; Llibre, J.; Misiurewicz, M., Badly ordered cycles of circle maps, Pacific J. Math., 184, 1, 23-41 (1998) · Zbl 0930.37020 · doi:10.2140/pjm.1998.184.23
[3] Alsedà, Ll.; Llibre, J.; Mañosas, F.; Misiurewicz, M., Lower bounds of the topological entropy for continuous maps of the circle of degree one, Nonlinearity, 1, 3, 463-479 (1988) · Zbl 0663.54023 · doi:10.1088/0951-7715/1/3/004
[4] Alsedà, Ll.; Llibre, J.; Misiurewicz, M., Combinatorial Dynamics and Entropy in Dimension One, Vol. 5 (2000), World Scientific: World Scientific, Singapore · Zbl 0963.37001
[5] Baldwin, S., Generalisation of a theorem of Sharkovsky on orbits of continuous real valued functions, Discrete Math., 67, 2, 111-127 (1987) · Zbl 0632.06005 · doi:10.1016/0012-365X(87)90021-5
[6] Bhattacharya, S. and Blokh, A., Very badly ordered cycles of interval maps. preprint arXiv:1908.06145. 2019.
[7] Block, L.; Guckenheimer, J.; Misiurewicz, M.; Young, L.-S., Periodic points and topological entropy of one-dimensional maps, Springer Lecture Notes Math, 819, 18-34 (1980) · Zbl 0447.58028 · doi:10.1007/BFb0086977
[8] Blokh, A., On transitive mappings of one-dimensional branched manifolds (Russian), in Differential-difference equations and problems of mathematical physics (Russian), Akad. Nauk Ukrain. SSR, Inst. Mat., Kiev, pp. 3-9. 1984. · Zbl 0605.58007
[9] Blokh, A., Dynamical systems on one-dimensional branched manifolds. I (Russian), Teor. Funktsii Funktsional. Anal. I Prilozhen., 46, 8-18 (1986) · Zbl 0621.58027
[10] Blokh, A., Dynamical systems on one-dimensional branched manifolds. II, (Russian), Teor. Funktsii Funktsional. Anal. I Prilozhen., 47, 67-77 (1987)
[11] Blokh, A., Dynamical systems on one-dimensional branched manifolds. III, (Russian), Teor. Funktsii Funktsional. Anal. I Prilozhen., 48, 32-46 (1987)
[12] Blokh, A., On rotation intervals for interval maps, Nonlineraity, 7, 5, 1395-1417 (1994) · Zbl 0809.58009 · doi:10.1088/0951-7715/7/5/008
[13] Blokh, A., The spectral decomposition for one-dimensional maps, Dyn. Reported, 4, 1-59 (1995) · Zbl 0828.58009 · doi:10.1007/978-3-642-61215-2_1
[14] Blokh, A., Rotation numbers, twists and a Sharkovsky-Misiurewicz-type ordering for patterns on the interval, Ergodic Theory Dyn. Syst., 15, 1, 1-14 (1995) · Zbl 0842.58018 · doi:10.1017/S014338570000821X
[15] Blokh, A., Functional rotation numbers for one-dimensional maps, Trans. Am. Math. Soc., 347, 2, 499-514 (1995) · Zbl 0820.54018 · doi:10.1090/S0002-9947-1995-1270659-0
[16] Blokh, A.; Misiurewicz, M., A new order for periodic orbits of interval maps, Ergodic Theory Dyn. Sys., 17, 3, 565-574 (1997) · Zbl 0886.58022 · doi:10.1017/S0143385797084927
[17] Blokh, A.; Snider, K., Over-rotation numbers for unimodal maps, J. Differ. Equ. Appl., 19, 7, 1108-1132 (2013) · Zbl 1335.37018 · doi:10.1080/10236198.2012.719501
[18] Bobok, J., Twist systems on the interval, Fund. Math., 175, 2, 97-117 (2002) · Zbl 1082.37036 · doi:10.4064/fm175-2-1
[19] Bobok, J.; Kuchta, M., X-minimal orbits for maps on the interval, Fund. Math., 156, 33-66 (1998) · Zbl 0909.26003
[20] Chenciner, A.; Gambaudo, J.-M.; Tresser, C., Une remarque sur la structure des endomorphismes de degré 1 du cercle, C. R. Acad. Sci. Paris Sér I Math., 299, 145-148 (1984) · Zbl 0584.58004
[21] Denker, M.; Grillenberger, C.; Sigmund, K., Ergodic Theory on Compact Spaces, Vol. 527 (1976), Springer-Verlag: Springer-Verlag, Berlin/New York · Zbl 0328.28008
[22] Ito, R., Rotation sets are closed, Math. Proc. Camb. Phil. Soc., 89, 1, 107-111 (1981) · Zbl 0484.58027 · doi:10.1017/S0305004100057984
[23] Misiurewicz, M., Periodic points of maps of degree one of a circle, Ergodic Theory Dyn. Syst., 2, 2, 221-227 (1982) · Zbl 0508.58038 · doi:10.1017/S014338570000153X
[24] Misiurewicz, M., Formalism for studying periodic orbits of one dimensional maps, European Conference on Iteration Theory (ECIT 87), World Scientific Singapore, pp. 1-7. 1989.
[25] Misiurewicz, M., Combinatorial patterns for maps of the interval, Mem. Am. Math. Soc., 456, 0-0 (1990) · Zbl 0931.41017
[26] Misiurewicz, M.; Ziemian, K., Rotation sets for maps of tori, J. Lond. Math. Soc. (2), 40, 3, 490-506 (1989) · Zbl 0663.58022 · doi:10.1112/jlms/s2-40.3.490
[27] Newhouse, S.; Palis, J.; Takens, F., Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math., 57, 1, 5-71 (1983) · Zbl 0518.58031 · doi:10.1007/BF02698773
[28] Poincaré, H., Sur les courbes définies par les équations différentielles, Oeuvres completes, 1 137-158, Gauthier-Villars, Paris. 1952.
[29] Rhodes, F.; Thompson, C., Rotation numbers for monotone functions on the circle, J. London Math. Soc., 34, 2, 360-368 (1986) · Zbl 0623.58008 · doi:10.1112/jlms/s2-34.2.360
[30] Sharkovsky, A. N., Coexistence of the cycles of a continuous mappimg of the line into itself, Ukraine Mat. Zh., 16, 61-71 (1964) · Zbl 0122.17504
[31] Sharkovsky, A. N., Coexistence of the cycles of a continuous mapping of the line into itself, Int. J. Bifur. Chaos Appl. Sci. Eng., 5, 5, 1263-1273 (1995) · Zbl 0890.58012 · doi:10.1142/S0218127495000934
[32] Ziemian, K., Rotation sets for subshifts of finite type, Fundam. Math., 146, 189-201 (1995) · Zbl 0821.58017
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.