×

zbMATH — the first resource for mathematics

Multinomial selection in the presence of infinite alternatives. (English) Zbl 1383.62366
Summary: We propose a new procedure for the multinomial selection problem to solve a real problem of any modern Air Force: the elaboration of better air-to-air tactics for Beyond Visual Range air-to-air combat that maximize its aircraft survival probability \(H(\theta,\omega)\), as well as enemy aircraft downing probability \(G(\theta,\omega)\). In this study, using a low-resolution simulator with generic parameters for the aircraft and missiles, we could increase an average success rate of 16.69% and 16.23% for \(H(\theta,\omega)\) and \(G(\theta,\omega)\), respectively, to an average success rate of 76.85% and 79.30%. We can assure with low probability of being wrong that the selected tactic has greater probability of yielding greater success rates in both \(H(\theta,\omega)\) and \(G(\theta,\omega)\) than any simulated tactic.
MSC:
62P99 Applications of statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1007/3-540-31182-3_15 · doi:10.1007/3-540-31182-3_15
[2] DOI: 10.1109/TAC.1974.1100705 · Zbl 0314.62039 · doi:10.1109/TAC.1974.1100705
[3] DOI: 10.1016/j.jspi.2003.09.010 · Zbl 1076.62073 · doi:10.1016/j.jspi.2003.09.010
[4] DOI: 10.1080/01966324.1991.10737314 · Zbl 0774.62084 · doi:10.1080/01966324.1991.10737314
[5] DOI: 10.1080/03610918608812545 · Zbl 0601.62034 · doi:10.1080/03610918608812545
[6] Bechhofer R.E., Sequential Identification and Ranking Procedures (with Special Reference to Koopman-Darmois Populations) (1968) · Zbl 0208.44601
[7] Buss A., Simkit (2010)
[8] DOI: 10.1109/WSC.2005.1574350 · doi:10.1109/WSC.2005.1574350
[9] DOI: 10.1145/318123.318230 · doi:10.1145/318123.318230
[10] Chen P., Sankhya: The Indian Journal of Statistics 51 (2) pp 158– (1989)
[11] DOI: 10.1111/j.2044-8317.1991.tb00971.x · doi:10.1111/j.2044-8317.1991.tb00971.x
[12] DOI: 10.1080/03610929108830671 · Zbl 0800.62497 · doi:10.1080/03610929108830671
[13] DOI: 10.1007/BF00939571 · Zbl 0662.90103 · doi:10.1007/BF00939571
[14] DOI: 10.1134/S1064230708040084 · Zbl 1172.93311 · doi:10.1134/S1064230708040084
[15] DOI: 10.1109/WSC.2008.4736053 · doi:10.1109/WSC.2008.4736053
[16] DOI: 10.1007/978-1-4612-2308-5_18 · doi:10.1007/978-1-4612-2308-5_18
[17] DOI: 10.1007/BFb0095040 · doi:10.1007/BFb0095040
[18] DOI: 10.1145/1276927.1276932 · Zbl 05458302 · doi:10.1145/1276927.1276932
[19] DOI: 10.1287/opre.1050.0237 · Zbl 1167.90630 · doi:10.1287/opre.1050.0237
[20] DOI: 10.2514/1.17910 · doi:10.2514/1.17910
[21] DOI: 10.2514/1.26024 · doi:10.2514/1.26024
[22] Kim S.-H., Handbooks in Operations Research and Management Science: Simulation pp 501– (2006)
[23] DOI: 10.1016/S1004-4132(07)60128-5 · Zbl 1243.90118 · doi:10.1016/S1004-4132(07)60128-5
[24] Miller J. O., Proceedings of 1997 Winter Simulation Conference pp 342– (1997)
[25] DOI: 10.1002/(SICI)1520-6750(199808)45:5<459::AID-NAV2>3.0.CO;2-2 · Zbl 0940.90062 · doi:10.1002/(SICI)1520-6750(199808)45:5<459::AID-NAV2>3.0.CO;2-2
[26] DOI: 10.1002/nav.10019 · Zbl 0993.62019 · doi:10.1002/nav.10019
[27] Montgomery D.C., Design and Analysis of Experiments (2005) · Zbl 1195.62128
[28] DOI: 10.1023/A:1022957123924 · Zbl 1048.91016 · doi:10.1023/A:1022957123924
[29] DOI: 10.1109/WSC.2007.4419745 · doi:10.1109/WSC.2007.4419745
[30] Ryan T.P., Modern Regression Methods (1997) · Zbl 0885.62074
[31] SOBRAPO, Operational Research (2011)
[32] DOI: 10.1007/3-540-36187-1_59 · doi:10.1007/3-540-36187-1_59
[33] DOI: 10.1109/WSC.2011.6148107 · doi:10.1109/WSC.2011.6148107
[34] DOI: 10.1109/WSC.2011.6148054 · doi:10.1109/WSC.2011.6148054
[35] Vieira Junior H., ACM Transactions on Modeling and Computer Simulation (2012)
[36] DOI: 10.1057/jos.2013.14 · doi:10.1057/jos.2013.14
[37] DOI: 10.2514/1.17168 · doi:10.2514/1.17168
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.