×

Rayleigh-Taylor and Richtmyer-Meshkov instabilities: a journey through scales. (English) Zbl 1491.76030

Summary: Hydrodynamic instabilities such as Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities usually appear in conjunction with the Kelvin-Helmholtz (KH) instability and are found in many natural phenomena and engineering applications. They frequently result in turbulent mixing, which has a major impact on the overall flow development and other effective material properties. This can either be a desired outcome, an unwelcome side effect, or just an unavoidable consequence, but must in all cases be characterized in any model. The RT instability occurs at an interface between different fluids, when the light fluid is accelerated into the heavy. The RM instability may be considered a special case of the RT instability, when the acceleration provided is impulsive in nature such as that resulting from a shock wave. In this pedagogical review, we provide an extensive survey of the applications and examples where such instabilities play a central role. First, fundamental aspects of the instabilities are reviewed including the underlying flow physics at different stages of development, followed by an overview of analytical models describing the linear, nonlinear and fully turbulent stages. RT and RM instabilities pose special challenges to numerical modeling, due to the requirement that the sharp interface separating the fluids be captured with fidelity. These challenges are discussed at length here, followed by a summary of the significant progress in recent years in addressing them. Examples of the pivotal roles played by the instabilities in applications are given in the context of solar prominences, ionospheric flows in space, supernovae, inertial fusion and pulsed-power experiments, pulsed detonation engines and Scramjets. Progress in our understanding of special cases of RT/RM instabilities is reviewed, including the effects of material strength, chemical reactions, magnetic fields, as well as the roles the instabilities play in ejecta formation and transport, and explosively expanding flows. The article is addressed to a broad audience, but with particular attention to graduate students and researchers who are interested in the state-of-the-art in our understanding of the instabilities and the unique issues they present in the applications in which they are prominent.

MSC:

76E17 Interfacial stability and instability in hydrodynamic stability
76E25 Stability and instability of magnetohydrodynamic and electrohydrodynamic flows
76E20 Stability and instability of geophysical and astrophysical flows
76F25 Turbulent transport, mixing
76-02 Research exposition (monographs, survey articles) pertaining to fluid mechanics

Software:

FronTier; FLAG
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. I, Phys. Rep., 720-722, 1 (2017) · Zbl 1377.76016
[2] Zhou, Y., Rayleigh-Taylor and Richtmyer-Meshkov instability induced flow, turbulence, and mixing. II, Phys. Rep., 723-725, 1 (2017) · Zbl 1377.76017
[3] Zhou, Y.; Clark, T. T.; Clark, D. S.; Glendinning, S. G.; Skinner, M. A.; Huntington, C. M.; Hurricane, O. A.; Dimits, A. M.; Remington, B. A., Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities, Phys. Plasmas, 26, Article 080901 pp. (2019)
[4] Rayleigh (John William Strutt), Lord, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Lord. Proc. London Math. Soc., 14, 170 (1883) · JFM 15.0848.02
[5] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes, I, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 201, 192 (1950) · Zbl 0038.12201
[6] Richtmyer, R. D., Taylor instability in shock acceleration of compressible fluids, Commun. Pure Appl. Math., 13, 297 (1960)
[7] Meshkov, E. E., Instability of the interface of two gases accelerated by a shock wave, Fluid Dyn., 4, 101 (1969)
[8] Jourdan, G.; Houas, L., High-amplitude single-mode perturbation evolution at the Richtmyer-Meshkov instability, Phys. Rev. Lett., 95, Article 204502 pp. (2005)
[9] Arnett, D., The role of mixing in astrophysics, Astrophys. J. Suppl. Ser., 127, 213 (2000)
[10] Burrows, A., Supernova explosions in the universe, Nature, 403, 727 (2000)
[11] Gull, S. F.; Longair, M. S., A numerical model of the structure and evolution of young supernova remnants, Mon. Not. R. Astron. Soc., 161, 47 (1973)
[12] Janka, H. T., Explosion mechanisms of core-collapse supernovae, Annu. Rev. Nucl. Part. Sci., 62, 407 (2012)
[13] Müller, B., Hydrodynamics of core-collapse supernovae and their progenitors, Living Rev. Comput. Astrophys., 6, 3 (2020)
[14] Sano, T.; Nishihara, K.; Matsuoka, C.; Inoue, T., Magnetic field amplification associated with the Richtmyer-Meshkov instability, Astrophys. J., 758, 126 (2012)
[15] Atzeni, S.; Meyer-ter-Vehn, J., The Physics of Inertial Fusion: BeamPlasma Interaction, Hydrodynamics, Hot Dense Matter, vol. 125 (2004), OUP Oxford
[16] Lindl, J. D., Inertial confinement fusion: the quest for ignition and energy gain using indirect drive (1998), American Institute of Physics
[17] Lindl, J.; Landen, O.; Edwards, J.; Moses, E.; N. I.C. Team, Review of the National Ignition Campaign 2009-2012, Phys. Plasmas, 21, Article 020501 pp. (2014)
[18] Goedbloed, J. P.; Keppens, R., Principles of Magnetohydrodynamics (2004), Cambridge University Press: Cambridge University Press Cambridge, U.K
[19] Goedbloed, J. P.; Keppens, R.; S. Poedts, S., Advanced Magnetohydrodynamics (2010), Cambridge University Press
[20] Houseman, G. A.; Molnar, P., Gravitational (Rayleigh-Taylor) instability of a layer with non-linear viscosity and convective thinning of continental lithosphere, Geophys. J. Int., 128, 125 (1997)
[21] Seropian, G.; Rust, A. C.; Sparks, R. S.J., The gravitational stability of lenses in magma mushes: Confined Rayleigh-Taylor instabilities, J. Geophys. Res.: Solid Earth, 123, 3593 (2018)
[22] von Helmholtz, H., On the discontinuous movements of fluids, Monder Königlichen Preussische Akademie der Wissenschaften zu Berlin, 23, 215 (1868)
[23] Thomson), Lord Kelvin (William, Hydrokinetic solutions and observations, Phil. Mag., 42, 362 (1871)
[24] Plesset, M. S.; Whipple, C. G., Viscous effects in Rayleigh-Taylor instability, Phys. Fluids, 17, 1 (1974) · Zbl 0282.76037
[25] Mikaelian, K. O., Exact, approximate, and hybrid treatments of viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E, 99, 023112 (2019)
[26] Mikaelian, K. O., Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Rev. E, 47, 375 (1993)
[27] Cao, Y. G.; Guo, H. Z.; Zhang, Z. F.; Sun, Z. H.; Chow, W. K., Effects of viscosity on the growth of Rayleigh-Taylor instability, J. Phys. A, 44, Article 275501 pp. (2011) · Zbl 1432.76101
[28] Mikaelian, K. O., Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension, Phys. Rev. E, 54, 3676 (1996)
[29] Young, Y. N.; Ham, F. E., Surface tension in incompressible Rayleigh-Taylor mixing flow, J. Turbul., 7, 1 (2006) · Zbl 1273.76148
[30] Sohn, S.-I.; Baek, S., Bubble merger and scaling law of the Rayleigh-Taylor instability with surface tension, Phys. Lett. A, 381, 3812 (2017) · Zbl 1375.76056
[31] Park, H. S.; Rudd, R. E.; Cavallo, R. M.; Barton, N. R.; Arsenlis, A.; Belof, J. L.; Blobaum, K. J.M.; El-dasher, B. S.; Florando, J. N.; Huntington, C. M.; Maddox, B. R., Grain-size-independent plastic flow at ultrahigh pressures and strain rates, Phys. Rev. Lett., 114, Article 065502 pp. (2015)
[32] Remington, B. A.; Bazan, G.; Belak, J.; Bringa, E.; Colvin, J. D.; Edwards, M. J.; Glendinning, S. G.; Kalantar, D. H.; Kumar, M.; Lasinski, B. F.; Lorenz, K. T., Materials science under extreme conditions of pressure and strain rate, Metall. Mater. Trans. A, 35, 2587 (2004)
[33] Carnevale, G. F.; Orlandi, P.; Zhou, Y.; Kloosterziel, R. C., Rotational suppression of Rayleigh-Taylor instability, J. Fluid Mech., 457, 181 (2002) · Zbl 1001.76036
[34] Scase, M. M.; Baldwin, K. A.; Hill, R. J., Rotating Rayleigh-Taylor instability, Phys. Rev. Fluids, 2, Article 024801 pp. (2017)
[35] Scase, M. M.; Baldwin, K. A.; Hill, R. J.A., Magnetically induced Rayleigh-Taylor instability under rotation: comparison of experimental and theoretical results, Phys. Rev. E, 102, 043101 (2020)
[36] Scase, M. M.; Sengupta, S., Cylindrical rotating Rayleigh-Taylor instability, J. Fluid Mech., 907, A33 (2021) · Zbl 1461.76525
[37] Perkins, L. J.; Ho, D. M.; Logan, B. G.; Zimmerman, G. B.; Rhodes, M. A.; Strozzi, D. J.; Blackfield, D. T.; Hawkins, S. A., The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion, Phys. Plasmas, 24, Article 062708 pp. (2017)
[38] Remington, B. A.; Drake, R. P.; Ryutov, D. D., Experimental astrophysics with high power lasers and z pinches, Rev. Modern Phys., 78, 755 (2006)
[39] Betti, R.; Hurricane, O. A., Inertial-confinement fusion with lasers, Nat. Phys., 12, 435 (2016)
[40] Tritton, D. J., Physical Fluid Dynamics (1977), Van Nostrand Reinhold, Wokingham: Van Nostrand Reinhold, Wokingham Berkshire, England · Zbl 0383.76001
[41] Navier, C. L., Sur les lois des mouvements des fluides, en ayant égard á l’adhésion des molécules, Annal. Chimie Phys., 19, 244 (1822)
[42] Navier, C. L., Mém. Acad. Sci. Institut France, 6, 389 (1827)
[43] Stokes, G. G., Mathematical and Physical Papers By George Gabriel Stokes (1880), Cambridge University Press: Cambridge University Press Cambridge, U.K
[44] Lamb, H., Hydrodynamics (1945), Dover: Dover New York · JFM 26.0868.02
[45] Euler, L., Mémoires de l’académie des sciences de Berlin, 274 (1757)
[46] Hosseini, B. S.; Turek, S.; Möller, M.; Palmes, C., Isogeometric Analysis of the Navier-Stokes-Cahn-Hilliard equations with application to incompressible two-phase flows, J. Comput. Phys., 348, 171 (2017) · Zbl 1380.76039
[47] Piriz, A. R.; Cortazar, O. D.; Lopez Cela, J. J.; Tahir, N. A., The Rayleigh-Taylor instability, Amer. J. Phys., 74, 1095 (2006)
[48] Gauthier, S., Compressible Rayleigh-Taylor turbulent mixing layer between Newtonian miscible fluids, J. Fluid Mech., 830, 211 (2017) · Zbl 1421.76122
[49] Meyer, K. A.; Blewett, P. J., Numerical investigation of the stability of a shock-accelerated interface between two fluids, Phys. Fluids, 15, 753 (1972)
[50] Vandenboomgaerde, M.; Mügler, C.; Gauthier, S., Impulsive model for the Richtmyer-Meshkov instability, Phys. Rev. E, 58, 2 (1998)
[51] Aure, R.; Jacobs, J. W., Particle image velocimetry study of the shock-induced single mode Richtmyer-Meshkov instability, Shock Waves, 18, 161 (2008) · Zbl 1267.76042
[52] Schülein, E.; Zheltovodov, A. A.; Pimonov, E. A.; Loginov, M. S., Experimental and numerical modeling of the bow shock interaction with pulse-heated air bubbles, Int. J. Aerosp. Innov., 2, 165 (2010)
[53] Hawley, J. F.; Zabusky, N. J., Vortex paradigm for shock-accelerated density stratified interfaces, Phys. Rev. Lett., 63, 1241 (1989)
[54] Truesdell, C., The Kinematics of Vorticity (1954), Indiana University Press, Bloomington: Indiana University Press, Bloomington Indiana · Zbl 0056.18606
[55] Zabusky, N. J., Vortex paradigm for accelerated inhomogeneous flows: Visiometrics for the Rayleigh-Taylor and Richtmyer-Meshkov environments, Annu. Rev. Fluid Mech., 31, 495 (1999)
[56] Schilling, O.; Latini, M.; Don, W. S., Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability, Phys. Rev. E, 76, Article 026319 pp. (2007)
[57] Schilling, O.; Latini, M., High-order WENO simulations of three-dimensional reshocked Richtmyer-Meshkov instability to late times: dynamics, dependence on initial conditions, and comparisons to experimental data, Acta Math. Sci., 30, 595 (2010) · Zbl 1228.76076
[58] Latini, M.; Schilling, O., A comparison of two-and three-dimensional single-mode reshocked Richtmyer-Meshkov instability growth, Physica D, 401, 132201 (2020) · Zbl 1453.76133
[59] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability (1981), Cambridge University Press: Cambridge University Press Cambridge, U.K · Zbl 0449.76027
[60] Chapman, P. R.; Jacobs, J. W., Experiments on the three-dimensional incompressible Richtmyer-Meshkov instability, Phys. Fluids, 18, Article 074101 pp. (2006) · Zbl 1146.76346
[61] Wilkinson, J. P.; Jacobs, J. W., Experimental study of the single-mode three-dimensional Rayleigh-Taylor instability, Phys. Fluids, 19, Article 124102 pp. (2007) · Zbl 1182.76828
[62] Brouillette, M., The Richtmyer-Meshkov instability, Annu. Rev. Fluid Mech., 34, 445 (2002) · Zbl 1047.76025
[63] Thornber, B.; Griffond, J.; Poujade, O.; Attal, N.; Varshochi, H.; Bigdelou, P.; Ramaprabhu, P.; Olson, B.; Greenough, J.; Zhou, Y.; Schilling, O.; Garside, K. A.; Williams, R. J.R.; Batha, C. A.; Kuchugov, P. A.; Ladonkina, M. E.; Tishkin, V. F.; Zmitrenko, N. V.; Rozanov, V. B.; Youngs, D. L., Late-time growth rate, mixing, and anisotropy in the multimode narrowband Richtmyer-Meshkov instability: The \(\theta \)-group collaboration, Phys. Fluids, 29, Article 105107 pp. (2017)
[64] Youngs, D. L., Rayleigh-Taylor mixing: Direct numerical simulation and implicit large eddy simulation, Phys. Scr., 92, 74006 (2017)
[65] Duff, R. E.; Harlow, F. H.; Hirt, C. W., Effects of diffusion on interface instability between gases, Phys. Fluids, 5, 417 (1962) · Zbl 0111.23601
[66] Latini, M.; Schilling, O.; Don, W. S., High-resolution simulations and modeling of reshocked single-mode Richtmyer-Meshkov instability: comparison to experimental data and to amplitude growth model predictions, Phys. Fluids, 19, 024104 (2007) · Zbl 1146.76456
[67] Walchli, B.; Thornber, B., Reynolds number effects on the single-mode Richtmyer-Meshkov instability, Phys. Rev. E, 95, Article 013104 pp. (2017)
[68] Zhou, Y.; Cabot, W. H., Time-dependent study of anisotropy in Rayleigh-Taylor instability induced turbulent flows with a variety of density ratios, Phys. Fluids, 31, Article 084106 pp. (2019)
[69] Dimonte, G.; Youngs, D. L.; Dimits, A.; Weber, S.; Marinak, M.; Wunsch, S.; Garasi, C.; Robinson, A.; Andrews, M. J.; Ramaprabhu, P.; Calder, A. C., A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group collaboration, Phys. Fluids, 16, 1668 (2004) · Zbl 1186.76143
[70] Tritschler, V. K.; Olson, B. J.; Lele, S. K.; Hickel, S.; Hu, X. Y.; Adams, N. A., On the Richtmyer-Meshkov instability evolving from a deterministic multimode planar interface, J. Fluid Mech., 755, 429 (2014)
[71] Ramaprabhu, P.; Dimonte, G.; Woodward, P.; Fryer, C.; Rockefeller, G.; Muthuraman, K.; Lin, P. H.; Jayaraj, J., The late-time dynamics of the single-mode Rayleigh-Taylor instability, Phys. Fluids, 24, Article 074107 pp. (2012)
[72] Krivets, V. V.; Ferguson, K., Turbulent mixing, induced by the Richtmyer-Meshkov instability, AIP Conf. Proc., 1793, Article 150003 pp. (2017)
[73] Andrews, M. J.; Spalding, D. B., A simple experiment to investigate two-dimensional mixing by Rayleigh-Taylor instability, Phys. Fluids A, 2, 922 (1990)
[74] Youngs, D. L., Numerical simulation of mixing by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Laser Part. Beams, 12, 725 (1994)
[75] Cook, A. W.; Dimotakis, P. E., Transition stages of Rayleigh-Taylor instability between miscible fluids, J. Fluid Mech., 443, 69 (2001) · Zbl 1015.76037
[76] Youngs, D. L., Three-dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. Fluids A, 3, 1312 (1991)
[77] Cabot, W. H.; Cook, A. W., Reynolds number effects on Rayleigh-Taylor instability with possible implications for type-Ia supernovae, Nat. Phys., 2, 562 (2006)
[78] Cook, A. W.; Cabot, W.; Miller, P. L., The mixing transition in Rayleigh-Taylor instability, J. Fluid Mech., 511, 333-362 (2004) · Zbl 1067.76040
[79] Zhou, Y.; Cabot, W. H.; Thornber, B., Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows, Phys. Plasmas, 23, Article 052712 pp. (2016)
[80] Livescu, D.; Ristorcelli, J. R., Buoyancy-driven variable-density turbulence, J. Fluid Mech., 591, 43 (2007) · Zbl 1125.76353
[81] Ma, T.; Patel, P. K.; Izumi, N.; Springer, P. T.; Key, M. H.; Atherton, L. J.; Benedetti, L. R.; Bradley, D. K.; Callahan, D. A.; Celliers, P. M.; Cerjan, C. J., Onset of hydrodynamic mix in high-velocity, highly compressed inertial confinement fusion implosions, Phys. Rev. Lett., 111, Article 085004 pp. (2013)
[82] Poinsot, T.; Veynante, D., Theoretical and Numerical Combustion (2005), R.T. Edwards: R.T. Edwards Philadelphia, PA
[83] Hirschfelder, J.; Curtiss, C. F.; Byrd, R., Molecular Theory of Gases and Liquids (1969), John Wiley & Sons: John Wiley & Sons New York
[84] Dimotakis, P. E., The mixing transition in turbulent flows, J. Fluid Mech., 409, 69 (2000) · Zbl 0986.76024
[85] Zhou, Y.; Robey, H. F.; Buckingham, A. C., Onset of turbulence in accelerated high-Reynolds-number flow, Phys. Rev. E, 67, 56305 (2003)
[86] Zhou, Y.; Remington, B. A.; Robey, H. F.; Cook, A. W.; Glendinning, S. G.; Dimits, A.; Buckingham, A. C.; Zimmerman, G. B.; Burke, E. W.; Peyser, T. A.; Cabot, W., Progress in understanding turbulent mixing induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Plasmas, 10, 1883 (2003)
[87] Robey, H. F.; Zhou, Y.; Buckingham, A. C.; Keiter, P.; Remington, B. A.; Drake, R. P., The time scale for the transition to turbulence in a high Reynolds number, accelerated flow, Phys. Plasmas, 10, 614 (2003)
[88] Drake, R. P.; Harding, E. C.; Kuranz, C. C., Approaches to turbulence in high-energy-density experiments, Phys. Scr., T132, Article 014022 pp. (2008)
[89] Zhou, Y., Unification and extension of the similarity scaling criteria and mixing transition for studying astrophysics using high energy density laboratory experiments or numerical simulations, Phys. Plasmas, 14, 82701 (2007)
[90] Mansoor, M. M.; Dalton, S. M.; Martinez, A. A.; Desjardins, T.; Charonko, J. J.; Prestridge, K. P., The effect of initial conditions on mixing transition of the Richtmyer-Meshkov instability, J. Fluid Mech., 904, A3 (2020) · Zbl 1460.76394
[91] Rose, H. A.; Sulem, P. L., Fully developed turbulence and statistical mechanics, J. Physique, 39, 441 (1978)
[92] D.L. Youngs, Effect of initial conditions on self-similar turbulent mixing, in: Proceedings of the 9th International Workshop on the Physics of Compressible Turbulent Mixing, 2004.
[93] Ramaprabhu, P.; Andrews, M. J., On the initialization of Rayleigh-Taylor simulations, Phys. Fluids, 16, L59 (2004) · Zbl 1186.76439
[94] Banerjee, A.; Andrews, M. J., 3D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing, Int. J. Heat Mass Transfer, 52, 3906 (2009) · Zbl 1167.76337
[95] Thornber, B.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., The influence of initial conditions on turbulent mixing due to Richtmyer-Meshkov instability, J. Fluid Mech., 654, 99 (2010) · Zbl 1193.76066
[96] Anuchina, N. N.; Volkov, V. I.; Gordeychuk, V. A.; Es’kov, N. S.; Iiyutina, O. S.; Kozyrev, O. M., 3D numerical simulation of Rayleigh-Taylor instability using MAH-3 code, Laser Part. Beams, 18, 175 (2000)
[97] Dimonte, G.; Ramaprabhu, P.; Youngs, D. L.; Andrews, M. J.; Rosner, R., Recent advances in the turbulent Rayleigh-Taylor instability, Phys. Plasmas, 12, Article 056301 pp. (2005)
[98] Inogamov, N. A.; Oparin, A. M.; Dem’yanov, A. Y.; Dembitskiĭ, L. N.; Khokhlov, V. A., On stochastic mixing caused by the Rayleigh-Taylor instability, J. Exp. Theor. Phys., 92, 715 (2001)
[99] Linden, P. F.; Redondo, J. M.; Youngs, D. L., Molecular mixing in Rayleigh-Taylor instability, J. Fluid Mech., 265, 97 (1994)
[100] Youngs, D. L., Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physica D, 12, 32 (1984)
[101] Youngs, D. L., Rayleigh-Taylor instability: numerical simulation and experiment, Plasma Phys. Control. Fusion, 34, 2071 (1992)
[102] Clark, T. T.; Zhou, Y., Self-similarity of two flows induced by instabilities, Phys. Rev. E, 68, Article 066305 pp. (2003)
[103] Clark, T. T.; Zhou, Y., Growth rate exponents of Richtmyer-Meshkov mixing layers, J. Appl. Mech., 73, 461 (2006) · Zbl 1111.74373
[104] Ristorcelli, J. R.; Clark, T. T., Rayleigh-Taylor turbulence: self-similar analysis and direct numerical simulations, J. Fluid Mech., 507, 213 (2004) · Zbl 1134.76364
[105] Dimonte, G., Dependence of turbulent Rayleigh-Taylor instability on initial perturbations, Phys. Rev. E, 69, Article 056305 pp. (2004)
[106] Dalziel, S. B.; Linden, P. F.; Youngs, D. L., Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability, J. Fluid Mech., 399, 48 (1999) · Zbl 0942.76513
[107] Ramaprabhu, P.; Dimonte, G.; Andrews, M. J., A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, J. Fluid Mech., 536, 285 (2005) · Zbl 1122.76035
[108] Alon, U.; Hecht, J.; Ofer, D.; Shvarts, D., Power laws and similarity of Rayleigh-Taylor and Richtmyer-Meshkov mixing fronts at all density ratios, Phys. Rev. Lett., 74, 534 (1995)
[109] Cheng, B. L.; Glimm, J.; Sharp, D. H., A three-dimensional renormalization group bubble merger model for Rayleigh-Taylor mixing, Chaos, 12, 267 (2002) · Zbl 1080.76579
[110] Glimm, J.; Li, X. L., Validation of the sharp-wheeler bubble merger model from experimental and computational data, Phys. Fluids, 31, 2077 (1988)
[111] Glimm, J.; Li, X. L.; Menikoff, R.; Sharp, D. H.; Zhang, Q., A numerical study of bubble interactions in Rayleigh-Taylor instability for compressible fluids, Phys. Fluids A, 2, 2046 (1990) · Zbl 0713.76049
[112] Glimm, J.; Sharp, D. H., Chaotic mixing as a renormalization-group fixed-point, Phys. Rev. Lett., 64, 2137 (1990) · Zbl 1050.76543
[113] Oron, D.; Arazi, L.; Kartoon, D.; Rikanati, A.; Alon, U.; Shvarts, D., Dimensionality dependence of the Rayleigh-Taylor and Richtmyer-Meshkov instability late-time scaling laws, Phys. Plasmas, 8, 2883 (2001)
[114] Shvarts, D.; Alon, U.; Ofer, D.; McCrory, R. L.; Verdon, C. P., Nonlinear evolution of multimode Rayleigh-Taylor instability in 2 and 3 dimensions, Phys. Plasmas, 2, 2465 (1995)
[115] George, E.; Glimm, J.; Li, X. L.; Marchese, A.; Xu, Z. L., A comparison of experimental, theoretical, and numerical simulation Rayleigh-Taylor mixing rates, Proc. Natl. Acad. Sci. USA, 99, 2587 (2002)
[116] Elbaz, Y.; Shvarts, D., Modal model mean field self-similar solutions to the asymptotic evolution of Rayleigh-Taylor and Richtmyer-Meshkov instabilities and its dependence on the initial conditions, Phys. Plasmas, 25, Article 062126 pp. (2018)
[117] Burton, G. C., Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method, Phys. Fluids, 23, Article 045106 pp. (2011)
[118] Cabot, W.; Zhou, Y., Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh-Taylor instability, Phys. Fluids, 25, Article 015107 pp. (2013)
[119] Livescu, D., Numerical simulations of two-fluid turbulent mixing at large density ratios and applications to the Rayleigh-Taylor instability, Phil. Trans. Ser. A, 371, Article 20120185 pp. (2003) · Zbl 1353.76028
[120] Youngs, D. L., The density ratio dependence of self-similar Rayleigh-Taylor mixing, Phil. Trans. R. Soc. A, 371, Article 20120173 pp. (2013) · Zbl 1353.76031
[121] Yilmaz, I., Analysis of Rayleigh-Taylor instability at high Atwood numbers using fully implicit, non-dissipative, energy-conserving large eddy simulation algorithm, Phys. Fluids, 32, Article 054101 pp. (2020)
[122] Glimm, J.; Sharp, D. H.; Kaman, T.; Lim, H., New directions for Rayleigh-Taylor mixing, Phil. Trans. R. Soc. A, 371, Article 20120183 pp. (2013) · Zbl 1353.76027
[123] Soulard, O.; Guillois, F.; Griffond, J.; Sabelnikov, V.; Simoëns, S., Permanence of large eddies in Richtmyer-Meshkov turbulence with a small Atwood number, Phys. Rev. Fluids, 3, Article 104603 pp. (2018)
[124] Dimonte, G.; Schneider, M., Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories, Phys. Fluids, 12, 304 (2000) · Zbl 1149.76361
[125] Youngs, D. L.; Thornber, B., Buoyancy-drag modelling of bubble and spike distances for single-shock Richtmyer-Meshkov mixing, Physica D, 410, Article 132517 pp. (2020) · Zbl 1486.76094
[126] Aspden, A.; Nikiforakis, N.; Dalziel, S.; Bell, J. B., Analysis of implicit les methods, Commun. Appl. Math. Comput. Sci., 3, 103 (2008) · Zbl 1162.76024
[127] Zhou, Y.; Grinstein, F. F.; Wachtor, A. J.; Haines, B. M., Estimating the effective Reynolds number in implicit large-eddy simulation, Phys. Rev. E, 89, Article 013303 pp. (2014)
[128] Zhou, Y.; Thornber, B., A comparison of three approaches to compute the effective Reynolds number of the implicit large-eddy simulations, J. Fluids Eng., 138, 70905 (2016)
[129] Schranner, F. S.; Domaradzki, J. A.; Hickel, S.; Adams, N. A., Assessing the numerical dissipation rate and viscosity in numerical simulations of fluid flows, Comput. & Fluids, 114, 84 (2015) · Zbl 1390.76513
[130] Chertkov, M.; Lebedev, V.; Vladimirova, N., Reactive Rayleigh-Taylor turbulence, J. Fluid Mech., 633, 1 (2009) · Zbl 1183.76727
[131] Black, W. J.; Denissen, N. A.; McFarland, . J.A., Evaporation effects in shock-driven multiphase instabilities, J. Fluids Eng., 139, Article 071204 pp. (2017)
[132] Bond, D.; Wheatley, V.; Samtaney, R.; Pullin, D. I., Richtmyer-Meshkov instability of a thermal interface in a two-fluid plasma, J. Fluid Mech., 833, 332 (2017) · Zbl 1419.76722
[133] Biferale, L.; Mantovani, F.; Sbragaglia, M.; Scagliarini, A.; Toschi, F.; Tripiccione, R., High resolution numerical study of Rayleigh-Taylor turbulence using a thermal lattice Boltzmann scheme, Phys. Fluids, 22, Article 115112 pp. (2010)
[134] Banerjee, A., Rayleigh-Taylor Instability: a status review of experimental designs and measurement diagnostics, J. Fluids Eng., 142, 120801 (2020)
[135] Andrews, M. J.; Dalziel, S. B., Small atwood number Rayleigh-Taylor experiments, Philos. Trans. R. Soc. A, 368, 1663 (2010) · Zbl 1192.76004
[136] Schilling, O., Progress on understanding Rayleigh-Taylor flow and mixing using synergy between simulation, modeling, and experiment, J. Fluids Eng., 142, 120802 (2020)
[137] Prestridge, K., Experimental adventures in variable-density mixing, Phys. Rev. Fluids, 3, 110501 (2018)
[138] Williams, F., Combustion Theory (1985), Perseus: Perseus Cambridge, MA
[139] Larrouturou, B., How to Preserve the Mass Fractions Positivity when Computing Compressible Multi-Component FlowsINRIA Rapports de Recherche No. 1080 (1989)
[140] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150 (1996) · Zbl 0847.76060
[141] Billet, G.; Giovangigli, V.; De Gassowski, G., Impact of volume viscosity on a shock-hydrogen-bubble interaction, Combust. Theory Model., 12, 221 (2008) · Zbl 1148.80374
[142] Massoni, J.; Saurel, R.; Nkonga, B.; Abgrall, R., Proposition de méthodes et modèles eulériens pour les problèmes à interfaces entre fluides compressibles en présence de transfert de chaleur: Some models and Eulerian methods for interface problems between compressible fluids with heat transfer, Int. J. Heat Mass Transfer, 45, 1287 (2002) · Zbl 1121.76378
[143] Allaire, G.; Clerc, S.; Kokh, S., A five-equation model for the simulation of interfaces between compressible fluids, J. Comput. Phys., 181, 577 (2002) · Zbl 1169.76407
[144] Thornber, B.; Groom, M.; Youngs, D., A five-equation model for the simulation of miscible and viscous compressible fluids, J. Comput. Phys., 372, 256 (2018) · Zbl 1415.76479
[145] Johnsen, E.; Ham, F., Preventing numerical errors generated by interface-capturing schemes in compressible multi-material flows, J. Comput. Phys., 231, 5705-5717 (2012) · Zbl 1522.76051
[146] Williams, R. J.R., Fully-conservative contact-capturing schemes for multi-material advection, J. Comput. Phys., 398, Article 108809 pp. (2019) · Zbl 1453.76115
[147] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics (1987), Pergamon Press: Pergamon Press Oxford, U.K · Zbl 0655.76001
[148] Olson, B. J.; Greenough, J., Large eddy simulation requirements for the richtmyer-meshkov instability, Phys. Fluids, 26, Article 044103 pp. (2014)
[149] Rehagen, T. J.; Greenough, J. A.; Olson, B. J., A validation study of the compressible Rayleigh-Taylor instability comparing the ares and miranda codes, J. Fluids Eng., 139, Article 061204 pp. (2017)
[150] Hill, D. J.; Pantano, C.; Pullin, D. I., Large-eddy simulation and multiscale modelling of a Richtmyer-Meshkov instability with reshock, J. Fluid Mech., 557, 29 (2006) · Zbl 1094.76031
[151] Johnsen, E.; Larsson, J.; Bhagatwala, A. V.; Cabot, W. H.; Moin, P.; Olson, B. J.; Rawat, P. S.; Shankar, S. K.; Sjögreen, B.; Yee, H. C.; Zhong, X., Assessment of high-resolution methods for numerical simulations of compressible turbulence with shock waves, J. Comput. Phys., 229, 1213 (2010) · Zbl 1329.76138
[152] Liu, X.; George, E.; Bo, W.; Glimm, J., Turbulent mixing with physical mass diffusion, Phys. Rev. E, 73, Article 056301 pp. (2006)
[153] Glimm, J.; Sharp, D. H.; Lim, H.; Kaufman, R.; Hu, W., Euler equation existence, non-uniqueness and mesh converged statistics, Phil. Trans. R. Soc. A, 373, Article 20140282 pp. (2015) · Zbl 1353.35227
[154] Mueschke, N. J.; Andrews, M. J., Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh-Taylor mixing layer (2006), 567 · Zbl 1104.76015
[155] Poinsot, T., Boundary conditions for direct simulations of compressible viscous flows, J. Comput. Phys., 101, 104 (1992) · Zbl 0766.76084
[156] Sandoval, D., The dynamics of variable-density turbulence (1995), University of Washington, (Ph.D. thesis)
[157] Livescu, D., Turbulence with large thermal and compositional density variations, Annu. Rev. Fluid Mech., 52, 309 (2020) · Zbl 1439.76033
[158] Ku, H. C.; Taylor, T. D.; Hirsh, R. S., Pseudospectral methods for solution of the incompressible Navier-Stokes equations, Comput. & Fluids, 15, 195 (1987) · Zbl 0622.76028
[159] Chung, D.; Pullin, D. I., Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence, J. Fluid Mech., 643, 279 (2010) · Zbl 1189.76309
[160] Gat, I.; Matheou, G.; Chung, D.; Dimotakis, P. E., Incompressible variable-density turbulence in an external acceleration field, J. Fluid Mech., 827, 506 (2017) · Zbl 1460.76410
[161] Livescu, D.; Wei, T.; Petersen, M. R., Direct numerical simulations of Rayleigh-Taylor instability, J. Phys. Conf. Ser., 318, Article 082007 pp. (2011)
[162] Baltzer, J. R.; Livescu, D., Low-speed turbulent shear-driven mixing layers with large thermal and compositional density variations, (Livescu, D.; Battaglia, F.; Givi, P., Modeling and Simulation of Turbulent Mixing and Reaction: For Power, Energy, and Flight (2019), Springer Nature: Springer Nature Singapore)
[163] Dodd, M. S.; Ferrante, A., A fast pressure-correction method for incompressible two-fluid flows, J. Comput. Phys., 273, 416 (2014) · Zbl 1351.76161
[164] Guermond, J. L.; Salgado, A., A splitting method for incompressible flows with variable density based on a pressure Poisson equation, J. Comput. Phys., 228, 2834 (2009) · Zbl 1159.76028
[165] Batchelor, G. K.; Canuto, V. M.; Chasnov, J. R., Homogeneous buoyancy-generated turbulence, J. Fluid Mech., 235, 349 (1992) · Zbl 0743.76040
[166] Bertolotti, F.; Herbert, T.; Spalart, P. R., Linear and nonlinear stability of the blasius boundary layer, J. Fluid Mech., 242, 441 (1992) · Zbl 0754.76029
[167] Mueschke, N. J.; Schilling, O., Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data, Phys. Fluids, 21, Article 014106 pp. (2009) · Zbl 1183.76366
[168] Mueschke, N. J.; Schilling, O., Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics, Phys. Fluids, 21, 014107 (2009) · Zbl 1183.76367
[169] Anderson, J., Fundamentals of Aerodynamics (2007), McGraw- Hill: McGraw- Hill NY
[170] Oggian, T.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., Computing multi-mode shock-induced compressible turbulent mixing at late times, J. Fluid Mech., 779, 411 (2015) · Zbl 1360.76115
[171] Thornber, B.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., Growth of a Richtmyer-Meshkov turbulent layer after reshock, Phys. Fluids, 23, 95107 (2011)
[172] Boffetta, G.; Mazzino, A., Incompressible Rayleigh-Taylor turbulence, Annu. Rev. Fluid Mech., 49, 119 (2017) · Zbl 1359.76136
[173] Rogallo, R. S., Numerical experiments in homogeneous turbulence, (NASA Tech. Rep. 81835 (1981))
[174] Moin, P.; Mahesh, K., Direct numerical simulation: a tool in turbulence research, Annu. Rev. Fluid Mech., 30, 1 (1998) · Zbl 1398.76073
[175] Young, Y. N.; Tufo, A.; Dubey, R.; Rosner, H., On the miscible Rayleigh-Taylor instability: Two and three dimensions, J. Fluid Mech., 447, 377-408 (2001) · Zbl 0999.76056
[176] Vladimirova, N.; Chertkov, M., Self-similarity and universality in Rayleigh-Taylor, Boussinesq turbulence, Phys. Fluids, 21, Article 015102 pp. (2009) · Zbl 1183.76550
[177] Boffetta, G.; Mazzino, A.; Musacchio, S.; Vozella, L., Statistics of mixing in three-dimensional Rayleigh-Taylor turbulence at low Atwood number and Prandtl number one, Phys. Fluids, 22, Article 035109 pp. (2010) · Zbl 1188.76016
[178] Matsumoto, T., Anomalous scaling of three-dimensional Rayleigh-Taylor turbulence, Phys. Rev. E, 79, Article 055301 pp. (2009)
[179] Schneider, N.; Gauthier, S., Vorticity and mixing in Rayleigh-Taylor Boussinesq turbulence, J. Fluid Mech., 802, 395 (2016) · Zbl 1462.76097
[180] Gray, D. D.; Giorgini, A., The validity of the Boussinesq approximation for liquids and gases, Int. J. Heat Mass Transfer, 19, 545 (1976) · Zbl 0328.76066
[181] Mikaelian, K. O., Boussinesq approximation for Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Phys. Fluids, 26, Article 054103 pp. (2014)
[182] Sethian, J. A.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 341 (2003) · Zbl 1041.76057
[183] Glimm, J.; Grove, J. W.; Li, X. L.; Oh, W.; Sharp, D. H., A critical analysis of Rayleigh-Taylor growth rates, J. Comput. Phys., 169, 652 (2001) · Zbl 1011.76057
[184] Gueyffier, D.; Li, J.; Nadim, A.; Scardovelli, R.; Zaleski, S., Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows, J. Comput. Phys., 152, 423 (1999) · Zbl 0954.76063
[185] Du, J.; Fix, B.; Glimm, J.; Jia, X.; Li, X.; Li, Y.; Wu, L., A simple package for front tracking, J. Comput. Phys., 213, 613 (2006) · Zbl 1089.65128
[186] Scardovelli, R.; Zaleski, S., Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech., 31, 567 (1999)
[187] George, E.; Glimm, J.; Li, X.; Li, Y.; Liu, X., Influence of scale-breaking phenomena on turbulent mixing rates, Phys. Rev. E, 73, Article 016304 pp. (2006)
[188] Shimony, A.; Malamud, G.; Shvarts, D., Density ratio and entrainment effects on asymptotic Rayleigh-Taylor instability, J. Fluids Eng., 140, Article 050906 pp. (2018)
[189] Davidson, P. A., Turbulence - An Introduction for Scientists and Engineers (2004), Oxford University Press: Oxford University Press Oxford, U.K · Zbl 1061.76001
[190] Thornber, B., Impact of domain size and statistical errors in simulations of homogeneous decaying turbulence and the Richtmyer-Meshkov instability, Phys. Fluids, 28, Article 045106 pp. (2016)
[191] Sherman, F., A low-density wind-tunnel study of shock-wave structure and relaxation phenomena in gases (1955), National Advisory Committee for Aeronautics: National Advisory Committee for Aeronautics Washington D.C
[192] Margolin, L. G.; Reisner, J. M., Fully compressible solutions for early stage Richtmyer-Meshkov instability, Comput. & Fluids, 151, 46-57 (2017) · Zbl 1390.76089
[193] Ryu, J.; Livescu, D., Turbulence structure behind the shock in canonical shock-vortical turbulence interaction, J. Fluid Mech., 756, R1 (2014)
[194] Groom, M.; Thornber, B., Direct numerical simulation of the multimode narrowband Richtmyer-Meshkov instability, Comput. & Fluids, 194, Article 104309 pp. (2019) · Zbl 1460.76542
[195] Zhou, Y., Renormalization group theory for fluid and plasma turbulence, Phys. Rep., 488, 1 (2010)
[196] Pope, S. B., Ten questions concerning the large-eddy simulation of turbulent flows, New J. Phys., 6, 35 (2004)
[197] Pope, S. B., Turbulent Flows (2000), Cambridge University Press: Cambridge University Press Cambridge, U.K · Zbl 0966.76002
[198] Chow, F. K.; Moin, P., A further study of numerical errors in large-eddy simulations, J. Comput. Phys., 184, 366 (2003) · Zbl 1047.76034
[199] Kosović, B.; Pullin, D. I.; Samtaney, R., Subgrid-scale modeling for large-eddy simulations of compressible turbulence, Phys. Fluids, 14, 1511 (2002) · Zbl 1185.76208
[200] Cook, A. W., Artificial fluid properties for large-eddy simulation of compressible turbulent mixing, Phys. Fluids, 19, Article 055103 pp. (2007) · Zbl 1146.76358
[201] Lesieur, M.; Metais, O., New trends in large-eddy simulations of turbulence, Annu. Rev. Fluid Mech., 28, 45 (1996)
[202] Meneveau, C.; Katz, J., Scale-invariance and turbulence models for large-eddy simulation, Annu. Rev. Fluid Mech., 32, 1 (2000) · Zbl 0988.76044
[203] Sagaut, P., Large Eddy Simulation for Incompressible Flows: An Introduction (2006), Springer Science & Business Media · Zbl 1091.76001
[204] Braun, N. O.; Pullin, D. I.; Meiron, D. I., Large eddy simulation investigation of the canonical shock-turbulence interaction, J. Fluid Mech., 858, 500 (2019) · Zbl 1415.76390
[205] Vreman, B.; Geurts, B.; Kuerten, H., Subgrid-modelling in LES of compressible flow, Appl. Sci. Res., 54, 191 (1995) · Zbl 0844.76039
[206] Garnier, E.; Sagaut, P.; Deville, M., Large eddy simulation of shock/homogeneous turbulence interaction, Comput. Fluids, 31, 245 (2002) · Zbl 1059.76032
[207] Burton, G. C.; Dahm, W. J., Multifractal subgrid-scale modeling for large-eddy simulation. I. Model development and a priori testing, Phys. Fluids, 17, Article 075111 pp. (2005) · Zbl 1187.76078
[208] Misra, A.; Pullin, D. I., A vortex-based subgrid stress model for large-eddy simulation, Phys. Fluids, 9, 2443 (1997) · Zbl 1185.76770
[209] Pullin, D. I.; Saffman, P. G., Reynolds Stresses and one-dimensional spectra for a vortex model of homogeneous anisotropic turbulence, Phys. Fluids, 6, 1787 (1994) · Zbl 0830.76044
[210] Boris, J. P.; Grinstein, F. F.; Oran, E. S.; Kolbe, R. L., New insights into large eddy simulation, Fluid Dyn. Res., 10, 199 (1992)
[211] Drikakis, D., Advances in turbulent flow computations using high-resolution methods, Prog. Aerosp. Sci., 39, 405 (2003)
[212] F.F. Grinstein, L.G. Margolin, W.J. Rider (Eds.), Implicit Large Eddy Simulation: Computing Turbulent Fluid Dynamics, Cambridge University Press, Cambridge, U.K. · Zbl 1135.76001
[213] Thornber, B.; Griffond, J.; Bigdelou, P.; Boureima, I.; Ramaprabhu, P.; Schilling, O.; Williams, R. J.R., Turbulent transport and mixing in the multimode narrowband Richtmyer-Meshkov instability, Phys. Fluids, 31, Article 096105 pp. (2019)
[214] Thornber, B.; Bilger, R. W.; Masri, A. R.; Hawkes, E. R., An algorithm for LES of premixed compressible flows using the conditional moment closure model, J. Comput. Phys., 230, 7687 (2011) · Zbl 1433.76060
[215] Shanmuganathan, S.; Youngs, D. L.; Griffond, J.; Thornber, B.; Williams, R. J.R., Accuracy of high-order density-based compressible methods in low Mach vortical flows, Internat. J. Numer. Methods Fluids, 74, 335 (2014) · Zbl 1455.65137
[216] Garcia-Uceda Juarez, A.; Raimo, A.; Shapiro, E.; Thornber, B., Steady turbulent flow computations using a low Mach fully compressible scheme, AIAA J., 52, 2559 (2014)
[217] Tishkin, V. F.; Nikishin, V. V.; Popov, I. V.; Favorski, A. P., Finite difference schemes of three-dimensional gas dynamics for the study of Richtmyer-Meshkov instability, Matemat. Modelirovanie, 7, 15 (1995) · Zbl 1002.76549
[218] Thornber, B.; Drikakis, D.; Williams, R. J.R.; Youngs, D. L., On entropy generation and dissipation of kinetic energy in high-resolution shock-capturing schemes, J. Comput. Phys., 227, 4853 (2008) · Zbl 1142.65073
[219] Thornber, B.; Mosedale, A.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., An improved reconstruction method for compressible flows with low Mach number features, J. Comput. Phys., 227, 4873 (2008) · Zbl 1388.76188
[220] Probyn, M.; Thornber, B.; Drikakis, D.; Youngs, D. L.; Williams, R. J.R., An investigation into nonlinear growth rate of two-dimensional and three-dimensional single-mode Richtmyer-Meshkov instability using an arbitrary-Lagrangian-Eulerian algorithm, J. Fluids Eng., 136, 91208 (2014)
[221] Park, H. S.; Lorenz, K. T.; Cavallo, R. M.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Becker, R. C.; Bernier, J. V.; Remington, B. A., Viscous Rayleigh-Taylor instability experiments at high pressure and strain rate, Phys. Rev. Lett., 104, Article 135504 pp. (2010)
[222] Coble, R. L., A model for boundary diffusion controlled creep in polycrystalline materials, J. Appl. Phys., 34, 1679 (1963)
[223] Ellis, S.; Stöckhert, B., Elevated stresses and creep rates beneath the brittle-ductile transition caused by seismic faulting in the upper crust, J. Geophys. Res.: Solid Earth, 109, B05407 (2004)
[224] Marrow, T. J.; Buffiere, J. Y.; Withers, P. J.; Johnson, G.; Engelberg, D., High resolution X-ray tomography of short fatigue crack nucleation in austempered ductile cast iron, Int. J. Fatigue, 26, 717 (2004)
[225] Renshaw, C. E.; Schulson, E. M., Universal behaviour in compressive failure of brittle materials, Nature, 412, 897 (2001)
[226] Park, H. S.; Remington, B. A.; Becker, R. C.; Bernier, J. V.; Cavallo, R. M.; Lorenz, K. T.; Pollaine, S. M.; Prisbrey, S. T.; Rudd, R. E.; Barton, N. R., Strong stabilization of the Rayleigh-Taylor instability by material strength at megabar pressures, Phys. Plasmas, 17, Article 056314 pp. (2010)
[227] Barnes, J. F.; Blewett, P. J.; McQueen, R. G.; Meyer, K. A.; Venable, D., Taylor instability in solids, J. Appl. Phys., 45, 727 (1974)
[228] Edwards, J.; Lorenz, K. T.; Remington, B. A.; Pollaine, S.; Colvin, J.; Braun, D.; Lasinski, B. F.; Reisman, D.; McNaney, J. M.; Greenough, J. A.; Wallace, R., Laser-driven plasma loader for shockless compression and acceleration of samples in the solid state, Phys. Rev. Lett., 92, Article 075002 pp. (2004)
[229] Krygier, A.; Powell, P. D.; McNaney, J. M.; Huntington, C. M.; Prisbrey, S. T.; Remington, B. A.; Rudd, R. E.; Swift, D. C.; Wehrenberg, C. E.; Arsenlis, A.; Park, H. S., Extreme hardening of Pb at high pressure and strain rate, Phys. Rev. Lett., 123, Article 205701 pp. (2019)
[230] Rybicki, G. B.; Lightman, A. P., Radiative Processes in Astrophysics (2008), John Wiley & Sons
[231] Steinberg, D. J.; Cochran, S. G.; Guinan, M. W., A constitutive model for metals applicable at high-strain rate, J. Appl. Phys., 51, 1498 (1980)
[232] Hopkinson, B., A method of measuring the pressure produced in the detonation of high explosives or by the impact of bullets, Philos. Trans. R. Soc. Lond. Ser. A, 213, 437 (1914)
[233] Kolsky, H., An investigation of the mechanical properties of materials at very high rates of loading, Proc. Phys. Soc. Lond. B, 62, II-B, 676 (1949)
[234] Meade, C.; Jeanloz, R., Yield strength of mgo to 40 GPa, J. Geophys. Res.: Solid Earth, 93, 3261 (1988)
[235] Steinberg, D. J.; Lund, C. M., A constitutive model for strain rates from \(1 0^{- 4}\) to \(1 0^6 s^{- 1}\), J. Appl. Phys., 65, 1528 (1989)
[236] Hoge, K. G.; Mukherjee, A. K., The temperature and strain rate dependence of the flow stress of tantalum, J. Mater. Sci., 12, 1666 (1977)
[237] Dorn, J. E.; Rajnak, S., Nucleation of kink pairs and the Peierls’ mechanism of plastic deformation, Trans. Metall. Soc. AIME, 230, 1052 (1964)
[238] Guyot, P.; Dorn, J. E., A critical review of the Peierls mechanism, Can. J. Phys., 45, 983 (1967)
[239] D. Klahn, A.K. Mukherhee, J.E. Dorn, Proc. 2nd Intl. Conf. on Strength of Metals and Alloys, Pacific Grove, CA, vol. 3, 1970, p. 951.
[240] Preston, D. L.; Tonks, D. L.; Wallace, D. C., Model of plastic deformation for extreme loading conditions, J. Appl. Phys., 93, 211 (2003)
[241] Schraad, M. W., The TEPLA framework and the physics, mathematics, and numerics of damage modeling (no. LA-ur-11-05846; LA-ur-11-5846) (2011), Los Alamos National Lab.(LANL), Los Alamos, NM (United States)
[242] Barton, N. R.; Bernier, J. V.; Becker, R.; Arsenlis, A.; Cavallo, R.; Marian, J.; Rhee, M.; Park, H. S.; Remington, B. A.; Olson, R. T., A multiscale strength model for extreme loading conditions, J. Appl. Phys., 109, Article 073501 pp. (2011)
[243] Barton, N. R.; Rhee, M., A multiscale strength model for tantalum over an extended range of strain rates, J. Appl. Phys., 114, Article 123507 pp. (2013)
[244] Belof, J. L.; Cavallo, R. M.; Olson, R. T.; King, R. S.; Gray, G. T.; Holtkamp, D.; Chen, S. R.; Rudd, R. E.; Barton, N.; Arsenlis, A.; Remington, B., Rayleigh-Taylor strength experiments of the pressure-induced \(\alpha \to \epsilon \to \alpha^\prime\) phase transition in iron, AIP Conf. Proc., 1426, 1521 (2012)
[245] Collins, G. S.; Melosh, H. J.; Marcus, R. A., Earth impact effects program: A web-based computer program for calculating the regional environmental consequences of a meteoroid impact on earth, Meteorit. Planet. Sci., 40, 817 (2005)
[246] Bourouiba, L.; Dehandschoewercker, E.; Bush, J. W., Violent expiratory events: on coughing and sneezing, J. Fluid Mech., 745, 537 (2014)
[247] Scharfman, B. E.; Techet, A. H.; Bush, J. W.M.; Bourouiba, L., Visualization of sneeze ejecta: steps of fluid fragmentation leading to respiratory droplets, Exp. Fluids, 57, 24 (2016)
[248] Bahl, P.; Doolan, C.; de Silva, C.; Chughtai, A. A.; Bourouiba, L.; MacIntyre, C. R., Airborne or droplet precautions for health workers treating COVID-19?, J. Infect. Dis. (2020), jiaa189, https://doi.org/10.1093/infdis/jiaa189
[249] Bourouiba, L., Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19, JAMA: J. Am. Med. Assoc., 323, 1837 (2020)
[250] Chu, D. K.; Akl, E. A.; Duda, S.; Solo, K.; Yaacoub, S.; Schünemann, H. J.; El-harakeh, A.; Bognanni, A.; Lotfi, T.; Loeb, M.; Hajizadeh, A., Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis, Lancet, 395, 1973 (2020)
[251] Bourouiba, L., Anatomy of a Sneeze (2016), Howard Hughes Medical Institute Image of The Week, https://www.biointeractive.org/classroom-resources/anatomy-sneeze
[252] Bourouiba, L., A sneeze, New England J. Med., 357, 8, Article e15 pp. (2016)
[253] Balachandar, S.; Zaleski, S.; Soldati, A.; Ahmadi, G.; Bourouiba, L., Host-to-host airborne transmission as a multiphase flow problem for science-based social distance guidelines, Int. J. Multiphase Flow, 4, Article 103439 pp. (2020), https://doi.org/10.1016/j.ijmultiphaseflow.2020.103439. Epub ahead of print. PMCID: PMC7471834
[254] Meaburn, J.; Boumis, P.; Walsh, J. R.; Steffen, W.; Holloway, A. J.; Williams, R. J.R.; Bryce, M., Highly supersonic motions within the outer features of the \(\eta\) Carinae nebulosity, Mon. Not. R. Astron. Soc., 282, 1313 (1996)
[255] Williams, R. J.R., Ejecta sources and scalings, AIP Conf. Proc., 1979, Article 080015 pp. (2018)
[256] Hartigan, P.; Foster, J. M.; Wilde, B. H.; Coker, R. F.; Rosen, P. A.; Hansen, J. F.; Blue, B. E.; Williams, R. J.R.; Carver, R.; Frank, A., Laboratory experiments, numerical simulations, and astronomical observations of deflected supersonic jets: Application to HH 110, Astrophys. J., 705, 1073 (2009)
[257] Buttler, W. T.; Williams, R. J.; Najjar, F. M., The special issue on ejecta, J. Dyn. Behav. Mater., 3, 151-345 (2017)
[258] Buttler, W. T.; Williams, R. J.; Najjar, F. M., Foreword to the special issue on ejecta, J. Dyn. Behav. Mater., 3, 151 (2017)
[259] Rigg, P. A.; Anderson, W. W.; Olson, R. T.; Buttler, W. T.; Hixson, R. S., Investigation of ejecta production in tin using plate impact experiments, AIP Conf. Proc., 845, 1283 (2006)
[260] Bell, D. J.; Routley, N. R.; Millett, J. C.F.; Whiteman, G.; Collinson, M. A.; Keightley, P. T., Investigation of ejecta production from tin at an elevated temperature and the eutectic alloy Lead-Bismuth, J. Dyn. Behav. Mater., 3, 208 (2017)
[261] Buttler, W. T.; Oró, D. M.; Preston, D. L.; Mikaelian, K. O.; Cherne, F. J.; Hixson, R. S.; Mariam, F. G.; Morris, C.; Stone, J. B.; Terrones, G.; Tupa, D., Unstable Richtmyer-Meshkov growth of solid and liquid metals in vacuum, J. Fluid Mech., 703, 60 (2012) · Zbl 1248.76065
[262] Mikhailov, A. L.; Ogorodnikov, V. A.; Sasik, V. S.; Raevskii, V. A.; Lebedev, A. I.; Zotov, D. E.; Erunov, S. V.; Syrunin, M. A.; Sadunov, V. D.; Nevmerzhitskii, N. V.; Lobastov, S. A., Experimental-calculation simulation of the ejection of particles from a shock-loaded surface, J. Exp. Theor. Phys., 118, 785 (2014)
[263] Foster, J. M.; Wilde, B. H.; Rosen, P. A.; Williams, R. J.R.; Blue, B. E.; Coker, R. F.; Drake, R. P.; Frank, A.; Keiter, P. A.; Khokhlov, A. M.; Knauer, J. P., High-energy-density laboratory astrophysics studies of jets and bow shocks, Astrophys. J. Lett., 634, L77 (2005)
[264] Signor, L.; Roy, G.; Chanal, P. Y.; Héreil, P. L.; Buy, F.; Voltz, C.; Llorca, F.; de Rességuier, T.; Dragon, A., Debris cloud ejection from shock-loaded tin melted on release or on compression, AIP Conf. Proc., 1195, 1065 (2009)
[265] Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Tandiang, D.; Toulminet, M.; Soulard, L., Ballistic properties of ejecta from a laser shock-loaded groove: SPH versus experiments, AIP Conf. Proc., Article 080012 pp. (2018)
[266] Sollier, A.; Lescoute, E., Characterization of the ballistic properties of ejecta from laser shock-loaded samples using high resolution picosecond laser imaging, Int. J. Impact Eng., 136, Article 103429 pp. (2020)
[267] Fisher, R. V., Models for pyroclastic surges and pyroclastic flows, J. Volcanol. Geotherm. Res., 6, 305 (1979)
[268] Woods, A. W., The dynamics of explosive volcanic eruptions, Rev. Geophys., 33, 495 (1995)
[269] Dimonte, G.; Terrones, G.; Cherne, F. J.; Ramaprabhu, P., Ejecta source model based on the nonlinear Richtmyer-Meshkov instability, J. Appl. Phys., 113, Article 024905 pp. (2013)
[270] Piriz, A. R.; Cela, J. L.; Tahir, N. A.; Hoffmann, D. H., Richtmyer-Meshkov Instability in elastic-plastic media, Phys. Rev. E, 78, Article 056401 pp. (2008)
[271] Buttler, W. T.; Renner, D.; Morris, C.; Manzanares, R.; Anderson, E. K.; Goett, J. J.; Heidemann, J.; Kalas, R. M.; Llobet, A.; Martinez, J. I.; Medina, P. V., Cavitation bubble interacting with a Richtmyer-Meshkov unstable sheet and spike, AIP Conf. Proc., 1979, Article 080003 pp. (2018)
[272] Williams, R. J.R.; Grapes, C. C., Simulation of double-shock ejecta production, J. Dynam. Behav. Mater., 3, 291 (2017)
[273] B. Grieves, 2D direct numerical simulation of ejecta production, in: Proceedings of the 10th International Workshop on the Physics of Compressible Turbulent Mixing, 2007, p. 95.
[274] Liu, W. B.; Ma, D. J.; He, A. M.; Wang, P., Ejecta from periodic grooved Sn surface under unsupported shocks, Chin. Phys. B, 27, Article 016202 pp. (2018)
[275] Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.; Karkhanis, V.; Ramaprabhu, P., On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum, J. Appl. Phys., 118, Article 185901 pp. (2015)
[276] Georgievskaya, A.; Raevsky, V. A., Estimation of spectral characteristics of particles ejected from the free surfaces of metals and liquids under a shock wave effect, AIP Conf. Proc., 1426, 1007 (2012)
[277] Williams, R. J.R., The late time structure of high density contrast, single mode Richtmyer-Meshkov flow, Phys. Fluids, 28, Article 074108 pp. (2016)
[278] Eggers, J., Nonlinear dynamics and breakup of free-surface flows, Rev. Modern Phys., 69, 865 (1997) · Zbl 1205.37092
[279] Andrews, M. J.; Preston, D. L. and, TAB Models for Liquid Sheet and Ligament Breakup (No. LA-UR-14-26937) (2014), Los Alamos National Lab.(LANL): Los Alamos National Lab.(LANL) Los Alamos, NM (United States)
[280] Raga, A. C.; Cantó, J.; Binette, L.; Calvet, N., Stellar jets with intrinsically variable sources, Astrophys. J., 364, 601 (1990)
[281] O’Rourke, P. J.; Amsden, J., The TAB method for numerical calculation of spray droplet breakup (1987), SAE Technical Paper
[282] Turner, M. R.; Sazhin, S. S.; Healey, J. J.; Crua, C.; Martynov, S. B., A breakup model for transient diesel fuel sprays, Fuel, 97, 288 (2012)
[283] Buttler, W. T.; Lamoreaux, S. K.; Schulze, R. K.; Schwarzkopf, J. D.; Cooley, J. C.; Grover, M.; Hammerberg, J. E.; La Lone, B. M.; Llobet, A.; Manzanares, R.; Martinez, J. I., Ejecta transport, breakup and conversion, J. Dyn. Behav. Mater., 3, 334 (2017)
[284] Sorenson, D. S.; Capelle, G. A.; Grover, M.; Johnson, R. P.; Kaufman, M. I.; LaLone, B. M.; Malone, R. M.; Marshall, B. F.; Minich, R. W.; Pazuchanics, P. D.; Smalley, D. D., Measurements of Sn ejecta particle-size distributions using ultraviolet in-line Fraunhofer holography, J. Dynam. Behav. Mater., 3, 233 (2017)
[285] Roland, C.; de Rességuier, T.; Sollier, A.; Lescoute, E.; Loison, D.; Soulard, L., Ejection of micron-scale fragments from triangular grooves in laser shock-loaded copper samples, J. Dynam. Behav. Mater, 3, 156 (2017)
[286] Bell, D. J.; Chapman, D. J., Phase doppler anemometry as an ejecta diagnostic, AIP Conf. Proc., 1793, Article 060011 pp. (2017)
[287] Schauer, M. M.; Buttler, W. T.; Frayer, D. K.; Grover, M.; Lalone, B. M.; Monfared, S. K.; Sorenson, D. S.; Stevens, G. D.; Turley, W. D., Ejected particle size distributions from shocked metal surfaces, J. Dynam. Behav. Mater., 3, 217 (2017)
[288] Steele, P. T.; Jacoby, B. A.; Compton, S. M.; Sinibaldi, J. O., Advances in ejecta diagnostics at LLNL, J. Dynam. Behav. Mater., 3, 2, 253-264 (2017)
[289] Durand, O.; Soulard, L., Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions, J. Appl. Phys., 114, Article 194902 pp. (2013)
[290] Liu, Y.; Grieves, B., Ejecta production and transport from a shocked Sn coupon, J. Fluids Eng., 136, Article 091202 pp. (2014)
[291] Karkhanis, V.; Ramaprabhu, P.; Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J., A numerical study of bubble and spike velocities in shock-driven liquid metals, J. Appl. Phys., 123, Article 025902 pp. (2018)
[292] Zhakhovskii, V. V.; Zybin, S. V.; Abarzhi, S. I.; Nishihara, K., Atomistic dynamics of the Richtmyer-Meshkov instability in cylindrical and planar geometries, AIP Conf. Proc., 845, 433 (2006)
[293] Germann, T. C.; Dimonte, G.; Hammerberg, J. E.; Kadau, K.; Quenneville, J.; Zellner, M. B., Large-scale molecular dynamics simulations of particulate ejection and Richtmyer-Meshkov instability development in shocked copper, (DYMAT2009 (EDP Sciences, 2009) (2009)), 1499
[294] Cherne, F. J.; Dimonte, G.; Germann, T. C., Richtmyer-Meshkov instability examinedwith large-scale molecular dynamics simulations, AIP Conf. Proc., 1426, 1307 (2012)
[295] Durand, O.; Soulard, L., Large-scale molecular dynamics study of jet breakup and ejecta production from shock-loaded copper with a hybrid method, J. Appl. Phys., 111, Article 044901 pp. (2012)
[296] Shao, J. L.; Wang, P.; He, A. M., Microjetting from a grooved al surface under supported and unsupported shocks, J. Appl. Phys., 116, Article 073501 pp. (2014)
[297] Durand, O.; Soulard, L., Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations, J. Appl. Phys., 117, Article 165903 pp. (2015)
[298] Wu, B.; Wu, F.; Zhu, Y.; Wang, P.; He, A.; Wu, H., Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks, AIP Adv., 8, Article 045002 pp. (2018)
[299] Durand, O.; Jaouen, S.; Soulard, L.; Heuze, O.; Colombet, L., Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension, J. Appl. Phys., 122, Article 135107 pp. (2017)
[300] Dyachkov, S.; Parshikov, A.; Zhakhovsky, V., Ejecta from shocked metals: Comparative simulations using molecular dynamics and smoothed particle hydrodynamics, AIP Conf. Proc., 1793, Article 100024 pp. (2017)
[301] A.D. Gosman, D. Clerides, Diesel spray modelling: a review, in: Proceedings of ILASS-Europe, Florence, Italy.
[302] Grant, G.; Brenton, J.; Drysdale, D., Fire suppression by water sprays, Progr. Energy Combust. Sci., 26, 79 (2000)
[303] Chiesa, M.; Mathiesen, V.; Melheim, J. A.; Halvorsen, B., Numerical simulation of particulate flow by the Eulerian-Lagrangian and the Eulerian-Eulerian approach with application to a fluidized bed, Comput. Chem. Eng., 29, 291 (2005)
[304] Valentine, G. A.; Wohletz, K. H., Numerical models of Plinian eruption columns and pyroclastic flows, J. Geophys. Res.: Solid Earth, 94, 1867 (1989)
[305] Dobran, F.; Neri, A.; Macedonio, G., Numerical simulation of collapsing volcanic columns, J. Geophys. Res.: Solid Earth, 98, 4231 (1993)
[306] Cloutman, L. D., A Numerical Model of Particulate Transport, Lawrence Livermore National Lab. Report, CA (USA) (1991)
[307] Fung, J.; Harrison, A. K.; Chitanvis, S.; Margulies, J., Ejecta source and transport modeling in the FLAG hydrocode, Comput. & Fluids, 83, 177 (2013) · Zbl 1290.76003
[308] McFarland, J. A.; Black, W. J.; Dahal, J.; Morgan, B. E., Computational study of the shock driven instability of a multiphase particle-gas system, Phys. Fluids, 28, Article 024105 pp. (2016)
[309] Bambauer, M.; Hasslberger, J.; Klein, M., Direct numerical simulation of the Richtmyer-Meshkov instability in reactive and nonreactive flows, Combust. Sci. Technol. (2020)
[310] Coronel, S. A.; Veilleux, J. C.; Shepherd, J. E., Ignition of stoichiometric hydrogen-oxygen by water hammer, Proc. Combust. Inst., 38, 3537-3545 (2021)
[311] Sykes, J. P.; Gallagher, T. P.; Rankin, B. A., Effects of Rayleigh-Taylor instabilities on turbulent premixed flames in a curved rectangular duct, Proc. Combust. Instit., 38, 6059-6066 (2021)
[312] Massa, L.; Jha, P., Linear analysis of the Richtmyer-Meshkov instability in shock-flame interactions, Phys. Fluids, 24, Article 056101 pp. (2012)
[313] Law, C. K., Combustion Physics (2006), Cambridge University Press: Cambridge University Press Cambridge, UK
[314] Yang, J.; Kubota, T.; Zukoski, E. E., Applications of shock-induced mixing to supersonic combustion, AIAA J., 31, 854 (1993)
[315] Marble, F. E.; Hendricks, G. J.; Zukoski, E. E., Progress toward shock enhancement of supersonic combustion processes, (Borghi, R.; Murthy, S. N.B., Turbulent Reactive Flows. Turbulent Reactive Flows, Lecture Notes in Engineering, vol. 40 (1989), Springer: Springer New York, NY)
[316] Marble, F. E.; Zukoski, E. E.; Jacobs, J.; Hendricks, G., Shock enhancement and control of hypersonic mixing and combustion, AIAA paper, 90-1981 (1990)
[317] Waitz, I. A.; Marble, F. E.; Zukoski, E. E., An investigation of a contoured wall injector for hypervelocity mixing augmentation, AIAA Paper, 9, 1-2265 (1991)
[318] R.G. Veraar, et al. Proof-of-principle experiment of a shock-induced combustion ramjet, in: 16th AIAA/DLR/DGLR Int. Space Planes Hypersonic Sys. Technol. Conf. (Bremen, Germany), 2009, p. 8.
[319] Yang, Q.; Chang, J.; Bao, W., Richtmyer-Meshkov instability induced mixing enhancement in the Scramjet combustor with a central strut, Adv. Mech. Eng., 6, Article 614189 pp. (2014)
[320] Kailasanath, K., Review of propulsion applications of detonation waves, AIAA J., 38, 1698 (2000)
[321] Cashdollar, K. L., Coal dust explosibility, J. Loss Prev. Process Ind., 9, 65 (1996)
[322] Dastidar, A. G.; Amyotte, P. R.; Pegg, M. J., Factors influencing the suppression of coal dust explosions, Fuel, 76, 663 (1997)
[323] Eckhoff, R. K., Current status and expected future trends in dust explosion research, J. Loss Prevent. Proc. Ind., 18, 225 (2005)
[324] Irving, T., Deadly Dust: Changes in Both Technology and Culture are Needed to Reduce the Risks of Dust Explosions (2013), The Chemical Institute of Canada
[325] Kapila, A. K.; Menikoff, R.; Bdzil, J. B.; Son, S. F.; Stewart, D. S., Two-phase modeling of deflagration-to-detonation transition in granular materials: Reduced equations, Phys. Fluids, 13, 3002 (2001) · Zbl 1184.76268
[326] Houim, R. W.; Oran, E. S., A multiphase model for compressible granular-gaseous flows: formulation and initial tests, J. Fluid Mech., 789, 166 (2016) · Zbl 1374.76234
[327] Ling, Y.; Wagner, J. L.; Beresh, S. J.; Kearney, S. P.; Balachandar, S., Interaction of a planar shock wave with a dense particle curtain: Modeling and experiments, Phys. Fluids, 24, Article 113301 pp. (2012)
[328] Annamalai, S.; Rollin, B.; Ouellet, F.; Neal, C.; Jackson, T. L.; Balachandar, S., Effects of initial perturbations in the early moments of an explosive dispersal of particles, J. Fluids Eng., 138, Article 070903 pp. (2016)
[329] Frost, D. L., Heterogeneous/particle-laden blast waves, Shock Waves, 28, 439 (2018)
[330] Paudel, M.; Dahal, J.; McFarland, J., Particle evaporation and hydrodynamics in a shock driven multiphase instability, Int. J. Multiph. Flow., 101, 137 (2018)
[331] Vorobieff, P.; Anderson, M.; Conroy, J.; White, R.; Truman, C. R.; Kumar, S., Vortex formation in a shock-accelerated gas induced by particle seeding, Phys. Rev. Lett., 106, Article 184503 pp. (2011)
[332] Anderson, M.; Vorobieff, P.; Truman, C. R.; Corbin, C.; Kuehner, G.; Wayne, P.; Conroy, J.; White, R.; Kumar, S., An experimental and numerical study of shock interaction with a gas column seeded with droplets, Shock Waves, 25, 107 (2015)
[333] Gamezo, V. N.; Khokhlov, A. M.; Oran, E. S.; Chtchelkanova, A. Y.; Rosenberg, R. O., Thermonuclear supernovae: Simulations of the deflagration stage and their implications, Science, 299, 77 (2003)
[334] Cottle, A. E.; Polanka, M. D., Numerical and experimental results from a common-source high-g ultra-compact combustor, (ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition (2016), American Society of Mechanical Engineers), pp. V04AT04A013-V04AT04A013
[335] Zelina, J.; Shouse, D. T.; Hancock, R. D., Ultra-compact combustors for advanced gas turbine engines, (ASME Turbo Expo 2004: Power for Land, Sea, and Air (2004), American Society of Mechanical Engineers), 53-62
[336] Lutoschkin, E., Pressure-gain combustion for gas turbines based on shock-flame interaction (2013), Univ. Stuttgart, (PhD dissertation)
[337] Hicks, E. P., Rayleigh-Taylor unstable flames—fast or faster?, Astrophys. J., 803, 72 (2015)
[338] Jeffery, D. J.; Leibundgut, B.; Kirshner, R. P.; Benetti, S.; Branch, D.; Sonneborn, G., Analysis of the photospheric epoch spectra of type 1a supernovae SN 1990N and SN 1991T, Astrophys. J., 397, 304-328 (1992)
[339] Fisher, A.; Branch, D.; Nugent, P.; Baron, E., Evidence for a high-velocity carbon-rich layer in the Type Ia SN 1990N, Astrophys. J. Lett., 481, L89 (1997)
[340] Wheeler, J. C.; Harkness, R. P.; Khokhlov, A. M.; Höflich, P., Stirling’s supernovae: a survey of the field, Phys. Rep., 256, 211 (1995)
[341] Oran, E. S., Astrophysical combustion, Proc. Comb. Inst., 30, 1823 (2005) · Zbl 1255.85006
[342] Matalon, M., The Darrieus-Landau instability of premixed flames, Fluid Dyn. Res., 50, Article 051412 pp. (2018)
[343] G. Darrieus, Propagation d’un front de flame La Technique Moderne (Paris) and in 1945 at Congres de Mecanique Appliquee, Unpublished work.
[344] Landau, L. D., On the theory of slow combustion, Acta Phys. USSR, 19, 77 (1944)
[345] Markstein, G. H., Experimental and theoretical studies of flame-front stability, J. Aeronaut. Sci., 18, 199 (1951)
[346] Poludnenko, A. Y., Pulsating instability and self-acceleration of fast turbulent flames, Phys. Fluids, 27, Article 014106 pp. (2015)
[347] Akkerman, V. Y.; Law, C. K.; Bychkov, V., Self-similar accelerative propagation of expanding wrinkled flames and explosion triggering, Phys. Rev. E, 83, Article 026305 pp. (2011)
[348] Akkerman, V. Y.; Law, C. K., Flame dynamics and consideration of deflagration-to-detonation transition in central gravitational field, Proc. Combust. Inst., 34, 1921 (2013)
[349] Markstein, G. H., A shock-tube study of flame front-pressure wave interaction, (Symposium (International) on Combustion, Vol. 6(1) (1957), Elsevier), 387-398
[350] Rudinger, G., Shock wave and flame interactions, (Third AGARD Coll (1958), Pergamon: Pergamon London)
[351] Thomas, G.; Bambrey, R.; Brown, C., Experimental observations of flame acceleration and transition to detonation following shock-flame interaction, Combust. Theory Model., 5, 573 (2001)
[352] Markstein, G. H.; Schwartz, D., Interaction between pressure waves and flame fronts, Jet Propulsion, 24, 173 (1955)
[353] Markstein, G. H., Flow disturbances induced near a slightly wavy contact surface, or flame front, traversed by a shock wave, J. Aerosp Sci., 24, 238 (1957) · Zbl 0077.19201
[354] M. La Fleche, Q. Xiao, Y. Wang, M. Radulescu, Experimental study of the head-on interaction of a shock wave with a cellular flame, in: 26th ICDERS, Boston.
[355] Picone, J. M.; Oran, E. S.; Boris, J. P.; Young, T. R., Theory of vorticity generation by shock wave and flame interactions, (Dynamics of Shock Waves, Explosions, and Detonations (1985), American Institute of Aeronautics and Astronautics), 429-448
[356] Batley, G. A.; McIntosh, A. C.; Brindley, J.; Falle, S. A.E. G., A numerical study of the vorticity field generated by the baroclinic effect due to the propagation of a planar pressure wave through a cylindrical premixed laminar flame, J. Fluid Mech., 279, 217 (1994) · Zbl 0825.76642
[357] Scarcini, T.; Thomas, G. O., Some experiments on shock-flame interaction, (Aberystwyth, Rep. DET (1992), University College of Wales), 905
[358] Dong, G.; Fan, B.; Ye, J., Numerical investigation of ethylene flame bubble instability induced by shock waves, Shock Waves, 17, 409 (2008)
[359] Khokhlov, A. M.; Oran, E. S.; Chtchelkanova, A. Y.; Wheeler, J. C., Interaction of a shock with a sinusoidally perturbed flame, Combust. Flame, 117, 99 (1999)
[360] Haehn, N.; Ranjan, D.; Weber, C.; Oakley, J.; Rothamer, D.; Bonazza, R., Reacting shock bubble interaction, Combust. Flame, 159, 1339 (2012)
[361] Khokhlov, A. M.; Oran, E. S.; Thomas, G. O., Numerical simulation of deflagration-to-detonation transition: the role of shock-flame interactions in turbulent flames, Combust. Flame, 117, 323 (1999)
[362] Houim, R. W.; Taylor, B. D., Detonation initiation from shock and material interface interactions in hydrogen-air mixtures, Proc. Combust. Inst., 37, 3513 (2019)
[363] Attal, N.; Ramaprabhu, P., Numerical investigation of a single-mode chemically reacting Richtmyer-Meshkov instability, Shock Waves, 25, 307 (2015)
[364] H. Yang, M.I. Radulescu, Dynamics of cellular flame deformation after a head-on interaction with a shock wave: reactive Richtmyer-Meshkov instability, arXiv preprint arXiv:2009.02546, submitted for publication.
[365] Diegelmann, F.; Hickel, S.; Adams, N. A., Three-dimensional reacting shock-bubble interaction, Combust. Flame, 181, 300 (2017)
[366] Valentino, M.; Kauffman, C.; Sichel, M., Experiments on shock induced combustion of isolated regions of hydrogen-oxygen mixtures, AIAA, 99-16669 (1999)
[367] Attal, N.; Ramaprabhu, P.; Hossain, J.; Karkhanis, V.; Uddin, M.; Gord, J. R.; Roy, S., Development and validation of a chemical reaction solver coupled to the FLASH code for combustion applications, Comput. & Fluids, 107, 59 (2015) · Zbl 1390.76129
[368] Elyanov, A.; Golub, V.; Volodin, V., Conditions for the development of Rayleigh-Taylor instability on the spherical flame front, J. Phys. Conf. Ser., 1129, Article 012011 pp. (2018)
[369] Xiao, H.; Houim, R. W.; Oran, E. S., Effects of pressure waves on the stability of flames propagating in tubes, Proc. Combust. Instit., 36, 1577 (2017)
[370] Attal, N.; Ramaprabhu, P., The stability of reacting single-mode Rayleigh-Taylor flames, Physica D, 404, Article 132353 pp. (2020)
[371] Attal, N., Interfacial Instabilities in Reacting Flows (2016), The University of North Carolina at Charlotte, (Ph.D. Dissertation)
[372] M.R. Baer, private communication, 2012.
[373] Courtiaud, S.; Lecysyn, N.; Damamme, G.; Poinsot, T.; L, S., Analysis of mixing in high-explosive fireballs using small-scale pressurised spheres, Shock Waves, 29, 339 (2018)
[374] Frost, D. L.; Gregoire, Y.; Petel, O.; Goroshin, S.; Zhang, F., Particle jet formation during explosive dispersal of solid particles, Phys. Fluids, 24, 1109 (2012)
[375] K.T. Hughes, A. Diggs, C. Park, D. Littrell, R.T. Haftka, N.H. Kim, S. Balachandar, Simulation driven experiments of macroscale explosive dispersal of particles, in: 2018 AIAA Aerospace Sciences Meeting, 2018, p. 1545.
[376] D.L. Frost, Z. Zarei, F. Zhang, Instability of combustion products interface from detonation of heterogeneous explosives, in: 20th International Colloquium on the Dynamics of Explosions and Reactive Systems, Montreal, Canada.
[377] Brode, H. L., Blast wave from a spherical charge, Phys. Fluids, 2, 217 (1959) · Zbl 0086.39802
[378] Crittenden, P. E.; Balachandar, S., The stability of the contact interface of cylindrical and spherical shock tubes, Phys. Fluids, 30, Article 064101 pp. (2018)
[379] Mankbadi, M. R.; Balachandar, S., Compressible inviscid instability of rapidly expanding spherical material interfaces, Phys. Fluids, 24, Article 034106 pp. (2012)
[380] Mankbadi, M.; Balachandar, S., Viscous effects on the non-classical Rayleigh-Taylor instability of spherical material interfaces, Shock Waves, 23, 603 (2013)
[381] Epstein, R., On the Bell-Plesset effects: the effects of uniform compression and geometrical convergence on the classical Rayleigh-Taylor instability, Phys. Plasmas, 11, 5114 (2004)
[382] Crittenden, P. E., Numerical Methods for Single and Two-Phase Flow Developed to Determine the Stability of Rapidly ExpandIng Contact and Particle Interfaces (2017), University of Florida, (Ph.D. dissertation)
[383] Mankbadi, M. R.; Balachandar, S., Multiphase effects on spherical Rayleigh-Taylor interfacial instability, Phys. Fluids, 26, Article 023301 pp. (2014)
[384] Kuhl, A., Mixing in ExplosionsTech. Rep. (1993), Lawrence Livermore National Lab.: Lawrence Livermore National Lab. El Segundo, CA (United States)
[385] Anisimov, S. I.; Zeldovich, Y. B., Rayleigh-Taylor instability of boundary between detonation products and gas in spherical explosion, Pis’ ma Zh. Eksp. Teor. Fiz., 3, 5 (1977)
[386] Anisimov, S.; Zeldovich, Y.; Inogamov, M.; Ivanov, M., The Taylor instability of contact boundary between expanding detonation products and a surrounding gas, (Shock Waves, Explosions, and Detonations. Shock Waves, Explosions, and Detonations, Progress in Astronautics and Aeronautics, vol. 87 (1977)), 218
[387] Kuhl, A.; Ferguson, R.; Priolo, F.; Chien, K.; Collins, J., Baroclinic Mixing in He FireballsTechnical Report. UCRL-JC-114982 (1993)
[388] Balakrishnan, K.; Genin, F.; Nance, D. V.; Menon, S., Numerical study of blast characteristics from detonation of homogeneous explosives, Shock Waves, 20, 147 (2010) · Zbl 1269.76058
[389] Annamalai, S.; Parmar, M. K.; Ling, Y.; Balachandar, S., Nonlinear Rayleigh-Taylor instability of a cylindrical interface in explosion flows, J. Fluids Eng., 136, Article 060910 pp. (2014)
[390] K. Balakrishnan, S. Menon, Mixing layer characterization due to the impulsive dispersion of dense solid particle clouds, in: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p. 5056.
[391] Balakrishnan, K.; Menon, S., On the role of ambient reactive particles in the mixing and afterburn behind explosive blast waves, Combust. Sci. Technol., 182, 186 (2010)
[392] Balakrishnan, K.; Ukai, S.; Menon, S., Clustering and combustion of dilute aluminum particle clouds in a post-detonation flow field, Proc. Combust. Inst., 33, 2255 (2011)
[393] Milne, A.; Parrish, C.; Worland, I., Dynamic fragmentation of blast mitigants, Shock Waves, 20, 41 (2010)
[394] Ripley, R.; Donahue, L.; Zhang, F., Jetting instabilities of particles from explosive dispersal, AIP Conf. Proc., 1426, 1615 (2012)
[395] Ouellet, F.; Annamalai, S.; Rollin, B., Effect of a bimodal initial particle volume fraction perturbation in an explosive dispersal of particles, AIP Conf. Proc., 1793, Article 150011 pp. (2017)
[396] B. Musci, S. Petter, G. Pathikonda, D. Ranjan, N. Denissen, An experimental study of the blast driven Rayleigh-Taylor and Richtmyer-Meshkov instabilities: Preliminary results, in: Proceedings of the 16th International Workshop on the Physics of Compressible Turbulent Mixing, 2018, p. 202.
[397] Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L., Impulsive dispersion of a granular layer by a weak blast wave, Shock Waves, 27, 187 (2017)
[398] Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L., Solid-particle jet formation under shock-wave acceleration, Phys. Rev. E, 88, Article 063011 pp. (2013)
[399] Rodriguez, V.; Saurel, R.; Jourdan, G.; Houas, L., External front instabilities induced by a shocked particle ring, Phys. Rev. E, 90, Article 043013 pp. (2014)
[400] Osnes, A. N.; Vartdal, M.; Reif, B. P., Numerical simulation of particle jet formation induced by shock wave acceleration in a Hele-Shaw cell, Shock Waves, 28, 451 (2018)
[401] Koneru, R. B.; Rollin, B.; Durant, B.; Ouellet, F.; Balachandar, S., A numerical study of particle jetting in a dense particle bed driven by an air-blast, Phys. Fluids, 32, Article 093301 pp. (2020)
[402] Zhou, Y.; Matthaeus, W. H.; Dmitruk, P., Colloquium: Magnetohydrodynamic turbulence and time scales in astrophysical and space plasmas, Rev. Modern Phys., 76, 1015 (2004)
[403] Braginskii, S. I., Transport processes in a plasma, Rev. Plasma Phys., 1 (1965)
[404] Kruskal, M. D.; Schwarzschild, M., Some instabilities of a completely ionized plasma, Proc. R. Soc. Lond. Ser. A, 223, 348 (1954) · Zbl 0057.24006
[405] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability (1961), Oxford University Press: Oxford University Press London · Zbl 0142.44103
[406] Hillier, A., Ideal MHD instabilities, with a focus on the Rayleigh-Taylor and Kelvin-Helmholtz instabilities, (MacTaggart, D.; Hillier, A., Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory (2019), Springer) · Zbl 1429.76119
[407] Hillier, A. S., On the nature of the magnetic Rayleigh-Taylor instability in astrophysical plasma: the case of uniform magnetic field strength, Mon. Not. R. Astron. Soc., 462, 2256 (2016)
[408] Ruderman, M. S.; Terradas, J.; Ballester, J. L., Rayleigh-Taylor Instabilities with sheared magnetic fields, Astrophys. J., 785, 110 (2014)
[409] Díaz, A. J.; Khomenko, E.; Collados, M., Rayleigh-Taylor instability in partially ionized compressible plasmas: One fluid approach, Astron. Astrophys., 564, A97 (2014)
[410] Ruderman, M. S., Compressibility effect on the Rayleigh-Taylor instability with sheared magnetic fields, Sol. Phys., 292, 47 (2017)
[411] Carlyle, J.; Hillier, A., The non-linear growth of the magnetic Rayleigh-Taylor instability, Astron. Astrophys., 605, A101 (2017)
[412] Stone, J. M.; Gardiner, T., Nonlinear evolution of the magnetohydrodynamic Rayleigh-Taylor instability, Phys. Fluids, 19, 9 (2007) · Zbl 1182.76723
[413] Stone, J. M.; Gardiner, T., The magnetic Rayleigh-Taylor instability in three dimensions, Astrophys. J., 671, 1726 (2007)
[414] Carlyle, J.; Williams, D. R.; van Driel-Gesztelyi, L.; Innes, D.; Hillier, A.; Matthews, S., Investigating the dynamics and density evolution of returning plasma blobs from the 2011 June 7 eruption, Astrophys. J., 782, 87 (2014)
[415] Wu, C. C., On MHD intermediate shocks, Geophys. Res. Lett., 14, 668 (1987)
[416] Wu, C. C., Formation, structure, and stability of MHD intermediate shocks, J. Geophys. Res.: Space Phys., 95, 8149 (1990)
[417] Wheatley, V.; Pullin, D. I.; Samtaney, R., Regular shock refraction at an oblique planar density interface in magnetohydrodynamics, J. Fluid Mech., 522, 179 (2005) · Zbl 1065.76207
[418] Falle, S. A.; Komissarov, S. S., On the inadmissibility of non-evolutionary shocks, J. Plasma Phys., 65, 29 (2001)
[419] Samtaney, R., Suppression of the Richtmyer-Meshkov instability in the presence of a magnetic field, Phys. Fluids, 15, L53 (2003) · Zbl 1186.76459
[420] Wheatley, V.; Pullin, D. I.; Samtaney, R., Stability of an impulsively accelerated density interface in magnetohydrodynamics, Phys. Rev. Lett., 95, Article 125002 pp. (2005)
[421] Wheatley, V.; Samtaney, R.; Pullin, D. I., The Richtmyer-Meshkov instability in magnetohydrodynamics, Phys. Fluids, 21, Article 082102 pp. (2009) · Zbl 1183.76568
[422] Sano, T.; Inoue, T.; Nishihara, K., Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas, Phys. Rev. Lett., 111, Article 205001 pp. (2013)
[423] Wouchuk, J. G.; Nishihara, K., Linear perturbation growth at a shocked interface, Phys. Plasmas, 3, 3761 (1996)
[424] Wouchuk, J. G.; Nishihara, K., Asymptotic growth in the linear Richtmyer-Meshkov instability, Phys. Plasmas, 4, 1028 (1997)
[425] Mostert, W.; Pullin, D. I.; Wheatley, V.; Samtaney, R., Magnetohydrodynamic implosion symmetry and suppression of Richtmyer-Meshkov instability in an octahedrally symmetric field, Phys. Rev. Fluids, 2, Article 013701 pp. (2017)
[426] Wheatley, V.; Samtaney, R.; Pullin, D. I.; Gehre, R. M., The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics, Phys. Fluids, 26, Article 016102 pp. (2014)
[427] Wheatley, V.; Gehre, R. M.; Samtaney, R.; Pullin, D. I., The magnetohydrodynamic Richtmyer-Meshkov instability: The oblique field case, (International Symposium on Shock Waves (2013), Springer: Springer Cham), 1107-1112
[428] Cao, J.; Wu, Z.; Ren, H.; Li, D., Effects of shear flow and transverse magnetic field on Richtmyer-Meshkov instability, Phys. Plasmas, 15, Article 042102 pp. (2008)
[429] Bakhsh, A.; Gao, S.; Samtaney, R.; Wheatley, V., Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics, Phys. Fluids, 28, Article 034106 pp. (2016)
[430] Mostert, W.; Wheatley, V.; Samtaney, R.; Pullin, D. I., Effects of seed magnetic fields on magnetohydrodynamic implosion structure and dynamics, Phys. Fluids, 26, Article 126102 pp. (2014)
[431] Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R., Converging cylindrical shocks in ideal magnetohydrodynamics, Phys. Fluids, 26, Article 097103 pp. (2014)
[432] Mostert, W.; Pullin, D. I.; Samtaney, R.; Wheatley, V., Converging cylindrical magnetohydrodynamic shock collapse onto a power-law-varying line current, J. Fluid Mech., 793, 414 (2016) · Zbl 1382.76293
[433] Li, Y.; Samtaney, R.; Wheatley, V., The Richtmyer-Meshkov instability of a double-layer interface in convergent geometry with magnetohydrodynamics, Matter Radiat. Extremes, 3, 207 (2018)
[434] Mostert, W.; Wheatley, V.; Samtaney, R.; Pullin, D. I., Effects of magnetic fields on magnetohydrodynamic cylindrical and spherical Richtmyer-Meshkov instability, Phys. Fluids, 27, Article 104102 pp. (2015)
[435] Lin, Z.; Zhang, H.; Chen, Z.; Liu, Y.; Hong, Y., The influence of magnetic field on the physical explosion of a heavy gas cloud, Int. J. Comput. Fluid Dyn., 31, 21 (2017) · Zbl 07518288
[436] Black, W. J.; Allen, R. C.; Maxon, W. C.; Denissen, N.; McFarland, J. A., Magnetohydrodynamic effects in a shock-accelerated gas cylinder, Phys. Rev. Fluids, 4, Article 043901 pp. (2019)
[437] Kulsrud, R. M., Plasma Physics for Astrophysics (2005), Princeton University Press
[438] Jun, B. I.; Norman, M. L.; Stone, J. M., A numerical study of Rayleigh-Taylor instability in magnetic fluids, Astrophys. J., 453, 332 (1995)
[439] Giacalone, J.; Jokipii, J. R., Magnetic field amplification by shocks in turbulent fluids, Astrophys. J. Lett., 663, L41 (2007)
[440] Guo, F.; Li, S.; Li, H.; Giacalone, J.; Jokipii, J. R.; Li, D., On the amplification of magnetic field by a supernova blast shock wave in a turbulent medium, Astrophys. J., 747, 98 (2012)
[441] Mizuno, Y.; Pohl, M.; Niemiec, J.; Zhang, B.; Nishikawa, K. I.; Hardee, P. E., Magnetic-field amplification by turbulence in a relativistic shock propagating through an inhomogeneous medium, Astrophys. J., 726, 62 (2010)
[442] Mizuno, Y.; Pohl, M.; Niemiec, J.; Zhang, B.; Nishikawa, K. I.; Hardee, P. E., Magnetic field amplification and saturation in turbulence behind a relativistic shock, Mon. Not. R. Astron. Soc., 439, 3490 (2014)
[443] Fraschetti, F., Turbulent amplification of a magnetic field driven by the dynamo effect at rippled shocks, Astrophys. J., 770, 84 (2013)
[444] Inoue, T.; Shimoda, J.; Ohira, Y.; Yamazaki, R., The origin of radially aligned magnetic fields in young supernova remnants, Astrophys. J. Lett., 772, L20 (2013)
[445] Matsuoka, C.; Nishihara, K.; Sano, T., Nonlinear motion of a current-vortex sheet in MHD Richtmyer-Meshkov instability, J. Phys. Conf. Ser., 688, Article 012063 pp. (2016)
[446] Matsuoka, C.; Nishihara, K.; Sano, T., Nonlinear interfacial motion in magnetohydrodynamic flows, High Energy Density Phys., 31, 19 (2019)
[447] Hohenberger, M.; Chang, P. Y.; Fiksel, G.; Knauer, J. P.; Betti, R.; Marshall, F. J.; Meyerhofer, D. D.; Séguin, F. H.; Petrasso, R. D., Inertial confinement fusion implosions with imposed magnetic field compression using the OMEGA laser, Phys. Plasmas, 19, Article 056306 pp. (2012)
[448] Manuel, M. E.; Li, C. K.; Séguin, F. H.; Frenje, J.; Casey, D. T.; Petrasso, R. D.; Hu, S. X.; Betti, R.; Hager, J. D.; Meyerhofer, D. D.; Smalyuk, V. A., First measurements of Rayleigh-Taylor-induced magnetic fields in laser-produced plasmas, Phys. Rev. Lett., 108, Article 255006 pp. (2012)
[449] Srinivasan, B.; Tang, X. Z., Mechanism for magnetic field generation and growth in Rayleigh-Taylor unstable inertial confinement fusion plasmas, Phys. Plasmas, 19, Article 082703 pp. (2012)
[450] Bond, D.; Wheatley, V.; Imran, S.; Samtaney, R.; Pullin, D.; Li, Y., Shock interactions in multi-fluid plasmas, Shock, 10, 13 (2018)
[451] Shen, N.; Li, Y.; Pullin, D. I.; Samtaney, R.; Wheatley, V., On the magnetohydrodynamic limits of the ideal two-fluid plasma equations, Phys. Plasmas, 25, Article 122113 pp. (2018)
[452] Bond, D.; Wheatley, V.; Li, Y.; Samtaney, R.; Pullin, D. I., The magnetised Richtmyer-Meshkov instability in two-fluid plasmas, J. Fluid Mech., 903, A41 (2020) · Zbl 1460.76945
[453] Shen, N.; Pullin, D. I.; Wheatley, V.; Samtaney, R., Impulse-driven Richtmyer-Meshkov instability in Hall-magnetohydrodynamics, Phys. Rev. Fluids, 4, 103902 (2019)
[454] Shen, N.; Wheatley, V.; Pullin, D. I.; Samtaney, R., Magnetohydrodynamic Richtmyer-Meshkov instability under an arbitrarily oriented magnetic field, Phys. Plasmas, 27, 062101 (2020)
[455] Evans, R. G., The influence of self-generated magnetic fields on the Rayleigh-Taylor instability, Plasma Phys. Control. Fusion, 28, 1021 (1986)
[456] Ryutov, D. D.; Derzon, M. S.; Matzen, M. K., The physics of fast Z pinches, Rev. Modern Phys., 72, 167 (2000)
[457] Lebedev, S. V.; Frank, A.; Ryutov, D. D., Exploring astrophysics-relevant magnetohydrodynamics with pulsed-power laboratory facilities, Rev. Modern Phys., 91, Article 025002 pp. (2019)
[458] Tandberg-Hanssen, E., The Nature of Solar Prominences (2013), Springer Science & Business Media
[459] Mackay, D. H.; Karpen, J. T.; Ballester, J. L.; Schmieder, B.; Aulanier, G., Physics of solar prominences: II—Magnetic structure and dynamics, Space Sci. Rev., 151, 333 (2010)
[460] Aulanier, G.; Démoulin, J. T., 3-D magnetic configurations supporting prominences. I. The natural presence of lateral feet, Astron. Astrophys., 329, 1125 (1998)
[461] Leroy, J. L., Observation of prominence magnetic fields, (Priest, E. R., Dynamics and Structure of Quiescent Solar Prominences (1988), Springer: Springer Dordrecht), 77-113
[462] Levens, P. J.; Schmieder, B.; LópezAriste, A.; Labrosse, N.; Dalmasse, K.; Gelly, B., Magnetic field in atypical prominence structures: Bubble, tornado, and eruption, Astrophys. J., 826, 164 (2016)
[463] Al-Janabi, K.; Antolin, P.; Baker, D.; Bellot Rubio, L. R.; Bradley, L.; Brooks, D. H.; Centeno, R.; Culhane, J. L.; DelZanna, G.; Doschek, G. A.; Fletcher, L.; Hara, H.; Harra, L. K.; Hillier, A., Achievements of Hinode in the first eleven years, Publ. Astron. Soc. Japan, 71, R1 (2019)
[464] Chae, J. C., Dynamics of vertical threads and descending knots in a hedgerow prominence, Astrophys. J., 714, 618 (2010)
[465] Hillier, A.; Isobe, H.; Watanabe, H., Observations of plasma blob ejection from a quiescent prominence by Hinode solar optical telescope, Publ. Astron. Soc. Japan, 63, L19 (2011)
[466] Leonardis, E.; Chapman, S. C.; Foullon, C., Turbulent characteristics in the intensity fluctuations of a solar quiescent prominence observed by the Hinode Solar Optical Telescope, Astrophys. J., 745, 185 (2012)
[467] Freed, M. S.; McKenzie, D. E.; Longcope, D. W.; Wilburn, M., Analysis of flows inside quiescent prominences as captured by Hinode/Solar Optical Telescope, Astrophys. J., 818, 57 (2016)
[468] Hillier, A.; Matsumoto, T.; Ichimoto, K., Investigating prominence turbulence with Hinode SOT dopplergrams, Astron. Astrophys., 597, A111 (2017)
[469] Hillier, A.; Polito, V., Observations of the Kelvin-Helmholtz instability driven by dynamic motions in a solar prominence, Astrophys. J. Lett., 864, L10 (2018)
[470] Stellmacher, G.; Wiehr, E., Observation of an instability in a quiescent prominence, Astron. Astrophys., 24, 321 (1973)
[471] de Toma, G.; Casini, R.; Burkepile, J. T.; Low, B. C., Rise of a dark bubble through a quiescent prominence, Astrophys. J. Lett., 687, L123 (2008)
[472] Berger, T. E.; Shine, R. A.; Slater, G. L.; Tarbell, T. D.; Okamoto, T. J.; Ichimoto, K.; Katsukawa, Y.; Suematsu, Y.; Tsuneta, S.; Lites, B. W.; Shimizu, T., Hinode SOT observations of solar quiescent prominence dynamics, Astrophys. J. Lett., 676, L89 (2008)
[473] Berger, T.; Testa, P.; Hillier, A.; Boerner, P.; Low, B. C.; Shibata, K.; Schrijver, C.; Tarbell, T.; Title, A., Magneto-thermal convection in solar prominences, Nature, 472, 197 (2011)
[474] Suárez, D. O.; Dí az, A. J.; Ramos, A. A.; Bueno, J. T., Time evolution of plasma parameters during the rise of a solar prominence instability, Astrophys. J. Lett., 785 (2014)
[475] Hillier, A.; Hillier, R.; Tripathi, D., Determination of prominence plasma \(\beta\) from the dynamics of rising plumes, Astrophys. J., 761, 106 (2012)
[476] Berger, T. E.; Slater, G.; Hurlburt, N.; Shine, R.; Tarbell, T.; Lites, B. W.; Okamoto, T. J.; Ichimoto, K.; Katsukawa, Y.; Magara, T.; Suematsu, Y., Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. I. Turbulent upflow plumes, Astrophys. J., 716, 1288 (2010)
[477] Heinzel, P.; Schmieder, B.; Fárník, F.; Schwartz, P.; Labrosse, N.; Kotrč, P.; Anzer, U.; Molodij, G.; Berlicki, A.; DeLuca, E. E.; Golub, L., Hinode, TRACE, SOHO, and ground-based observations of a quiescent prominence, Astrophys. J., 686, 1383 (2008)
[478] Gunár, S.; Schwartz, P.; Dudík, J.; Schmieder, B.; Heinzel, P.; Jurčák, J., Magnetic field and radiative transfer modelling of a quiescent prominence, Astron. Astrophys., 567, A123 (2014)
[479] Dudík, J.; Aulanier, G.; Schmieder, B.; Zapiór, M.; Heinzel, P., Magnetic topology of bubbles in quiescent prominences, Astrophys. J., 761, 9 (2012)
[480] Ryutova, M.; Berger, T.; Frank, Z.; Tarbell, T., Observation of plasma instabilities in quiescent prominences, Sol. Phys., 267, 75 (2010)
[481] Berger, T.; Hillier, A.; Liu, W., Quiescent prominence dynamics observed with the Hinode Solar Optical Telescope. II. Prominence bubble boundary layer characteristics and the onset of a coupled Kelvin-Helmholtz Rayleigh-Taylor instability, Astrophys. J., 850, 60 (2017)
[482] Díaz, A. J.; Soler, R.; Ballester, J. L., Rayleigh-Taylor instability in partially ionized compressible plasmas, Astrophys. J., 754, 41 (2012)
[483] Khomenko, E.; Díaz, A.; De Vicente, A.; Collados, M.; Luna, M., Rayleigh-Taylor instability in prominences from numerical simulations including partial ionization effects, Astron. Astrophys., 565, A45 (2014)
[484] Khomenko, E., Multi-fluid extensions of MHD and their implications on waves and instabilities, (MacTaggart, D.; Hillier, A., Topics in Magnetohydrodynamic Topology, Reconnection and Stability Theory (2020), Springer: Springer Cham), 69-116 · Zbl 1429.76121
[485] Hillier, A.; Isobe, H.; Shibata, K.; Berger, T., Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlüter prominence model, Astrophys. J. Lett., 736, L1 (2011)
[486] Hillier, A.; Berger, T.; Isobe, H.; Shibata, K., Numerical simulations of the magnetic Rayleigh-Taylor instability in the Kippenhahn-Schlüter prominence model. I. Formation of upflows, Astrophys. J., 746, 120 (2012)
[487] Keppens, R.; Xia, C.; Porth, O., Solar prominences:Double, Double…Boil and Bubble, Astrophys. J. Lett., 806, L13 (2015)
[488] Xia, C.; Keppens, R., Internal dynamics of a twin-layer solar prominence, Astrophys. J. Lett., 825, L29 (2016)
[489] Terradas, J.; Soler, R.; Luna, M.; Oliver, R.; Ballester, J. L., Morphology and dynamics of solar prominences from 3D MHD simulations, Astrophys. J., 799, 94 (2015)
[490] Kaneko, T.; Yokoyama, T., Impact of dynamic state on the mass condensation rate of solar prominences, Astrophys. J., 869, 136 (2018)
[491] Hillier, A., The magnetic Rayleigh-Taylor instability in solar prominences, Rev. Modern Plasma Phys., 2, 1 (2018)
[492] National Research Council, Solar and Space Physics: A Science for a Technological Society (2013), The National Academies Press.: The National Academies Press. Washington, DC, https://doi.org/10.17226/13060
[493] National space weather strategy and action plan, space weather operations, research, and mitigation working group space weather, security, and hazards subcommittee committee on homeland and national security of the National Science & Technology Council. https://www.whitehouse.gov/wp-content/uploads/2019/03/National-Space-Weather-Strategy-and-Action-Plan-2019.pdf.
[494] Kelley, M. C., Earth’s Ionosphere, Plasma Physics and Electrodynamics (2009), Elsevier: Elsevier Amsterdam
[495] Dickinson, R. E.; Ridley, E. C.; Roble, R. G., A three-dimensional general circulation model of the thermosphere, J. Geophys. Res.: Space Phys., 86, 1499 (1981)
[496] Fuller-Rowell, T. J.; Rees, D. A., A three dimensional time dependent global model of the thermosphere, J. Atmos. Sci., 37, 2545 (1980)
[497] Fuller-Rowell, T. J.; Rees, D.; Quegan, S.; Moffett, R. J.; Bailey, G. J., Interactions between neutral thermospheric composition and the polar ionosphere using a coupled ionosphere-thermosphere model, J. Geophys. Res., 92, 7744 (1987)
[498] Roble, R. G.; Ridley, E. C., A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (TIME-GCM): Equinox solar cycle minimum simulations (30-500 km), Geophys. Res. Lett., 21, 417 (1994)
[499] DeBoer, J. D.; Noël, J.; St-Maurice, J. P., The effects of mesoscale regions of precipitation on the ionospheric dynamics, electrodynamics and electron density in the presence of strong ambient electric field, Ann. Geophys., 28, 1345 (2010)
[500] Gilman, M.; Smith, E.; Tsynkov, S., Transionospheric Synthetic Aperture Imaging (2017), Birkhauser/Springer: Birkhauser/Springer Cham, Switzerland · Zbl 1375.86001
[501] Heelis, R. A.; Lowell, J. K.; Spiro, R. W., A model of the high-latitude ionospheric convection pattern, J. Geophys. Res., 87, 6339 (1982)
[502] Hysell, D. L.; Larsen, M. F.; Zhou, Q. H., Common volume coherent and incoherent scatter radar observations of midlatitude sporadic E layers and QP echoes, Ann. Geophys., 22, 3277 (2004)
[503] Park, J.; Min, K. W.; Kim, V. P.; Kil, H.; Su, S. Y.; Chao, C. K.; Lee, J. J., Equatorial plasma bubbles with enhanced ion and electron temperatures, J. Geophys. Res.: Space Phys., 113, A09318 (2008)
[504] Raghavarao, R.; Sekar, R.; Suhasini, R., Nonlinear numerical simulation of equatorial spread-F—Effects of winds and electric fields, Adv. Space Res., 12, 227 (1992)
[505] Retterer, J. M., Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 1. Plume model, J. Geophys. Res., 115, A03306 (2010)
[506] Retterer, J. M., Forecasting low-latitude radio scintillation with 3-D ionospheric plume models: 2. Scintillation calculation, J. Geophys. Res., 115, A03307 (2010)
[507] Sekar, R.; Suhasini, R.; Raghavarao, R., Effects of vertical winds and electric fields in the nonlinear evolution of equatorial spread F, J. Geophys. Res.: Space Phys., 99, 2205 (1994)
[508] Sekar, R.; Kherani, E. A., Effects of molecular ions on the collisional Rayleigh- Taylor instability: Nonlinear evolution, J. Geophys. Res., 107, 1 (2002)
[509] Steenburgh, R. A.; Smithtro, C. G.; Groves, K. M., Ionospheric scintillation effects on single frequency GPS, Space Weather, 6, 1 (2008)
[510] Woodman, R. F.; La Hoz, C., Radar observations of F region equatorial irregularities, J. Geophys. Res., 81, 5447 (1976)
[511] Sun, Z. P.; Turco, R. P.; Walterscheid, R. L.; Venkateswaran, S. V.; Jones, P. W., Thermospheric response to morningside diffuse aurora: High-resolution three-dimensional simulations, J. Geophys. Res.: Space Phys., 100, 23779 (1995)
[512] Xu, Z. W.; Wu, J.; Wu, Z. S., A survey of ionospheric effects on space-based radar, Waves Random Complex Media, 14, S189 (2004)
[513] Sojka, J. J., Global scale, physical models of the Fregion ionospere, Rev. Geophys., 27, 371 (1989)
[514] Dungey, J. W., Convective diffusion in the equatorial F region, J. Atmos. Terr. Phys., 9, 304 (1956)
[515] Gentile, L. C.; Burke, W. J.; Rich, F. J., A climatology of equatorial plasma bubbles from DMSP 1989-2004, Radio Sci., 41, Article RS5S21 pp. (2006)
[516] Richmond, A. D.; Ridley, E. C.; Roble, R. G., A thermosphere/ionosphere general circulation model with coupled electrodynamics, Geophys. Res. Lett., 19, 601 (1992)
[517] Wu, Q., Longitudinal and seasonal variation of the equatorial flux tube integrated Rayleigh-Taylor instability growth rate, J. Geophys. Res. Space Phys., 120 (2015)
[518] Fejer, B. G.; Scherliess, L.; de Paula, E. R., Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F, J. Geophys. Res., 104, 19, 859 (1999)
[519] Wu, Q., Solar effect on the Rayleigh-Taylor instability growth rate as simulated by the NCAR TIEGCM, J. Atmos. Sol.-Terr. Phys., 156, 97 (2017)
[520] Sultan, P. J., Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F, J. Geophys. Res.: Space Phys., 101, 26875 (1996)
[521] Basu, S.; Basu, S.; Aarons, J.; McClure, J. P.; Cousins, M. D., On the coexistence of kilometer-and meter-scale irregularities in the nighttime equatorial F region, J. Geophys. Res.: Space Phys., 83, 4219 (1978)
[522] Mahalov, A., Multiscale modeling and nested simulations of three-dimensional ionospheric plasmas: Rayleigh-Taylor turbulence and nonequilibrium layer dynamics at fine scales, Phys. Scr., 89, Article 098001 pp. (2014)
[523] Alam Kherani, E.; De Paula, E. R.; Bertoni, F. C., Effects of the fringe field of Rayleigh-Taylor instability in the equatorial E and valley regions, J. Geophys. Res.: Space Phys., 109, 12310 (2004)
[524] de La Beaujardiere, O., C/NOFS: a mission to forecast scintillations, J. Atmos. Sol.-Terr. Phys., 66, 1573 (2004)
[525] Huang, C. S.; Kelley, M. C., Nonlinear evolution of equatorial spread F: 2. Gravity wave seeding of Rayleigh-Taylor instability, J. Geophys. Res.: Space Phys., 101, 293 (1996)
[526] Huang, C. S.; Kelley, M. C., Nonlinear evolution of equatorial spread F: 4. Gravity waves, velocity shear, and day-to-day variability, J. Geophys. Res.: Space Phys., 101, 24521 (1996)
[527] Huba, J. D.; Ossakow, S. L.; Joyce, G.; Krall, J.; England, S. L., Three-dimensional equatorial spread F modeling: zonal neutral wind effects, Geophys. Res. Lett., 36, L19106 (2009)
[528] Cheng, B.; Mahalov, A., General results on zonation in rotating systems with a \(\beta\) effect and the electromagnetic force, (Galperin, B.; Read, P. L., Zonal Jets: Phenomenology, Genesis and Physics (2019), Cambridge University Press: Cambridge University Press Cambridge, U.K.)
[529] Durazo, J.; Kostelich, E.; Mahalov, A.; Tang, W., Observing system experiments with an ionospheric electrodynamics model, Phys. Scr., 91, Article 044001 pp. (2016)
[530] Durazo, J. A.; Kostelich, E. J.; Mahalov, A., Local ensemble transform Kalman filter for ionospheric data assimilation: Observation influence analysis during a geomagnetic storm event, J. Geophys. Res.: Space Phys., 122, 9652 (2017)
[531] Kelley, M. C.; Larsen, M. F.; LaHoz, C.; McClure, J. P., Gravity wave initiation of equatorial spread F: A case study, J. Geophys. Res.: Space Phys., 86, 9087 (1981)
[532] Krall, J.; Huba, J. D.; Joyce, G.; Zalesak, S. T., Three-dimensional simulation of equatorial spread-F with meridional wind effects, Ann. Geophys., 27, 1821 (2009)
[533] Krall, J.; Huba, J. D.; Joyce, G.; Yokoyama, T., Density enhancements associated with equatorial spread F, Ann. Geophys., 28, 327 (2010)
[534] Mahalov, A.; Moustaoui, M., Multiscale nested simulations of Rayleigh-Taylor instabilities in ionospheric flows, J. Fluids Eng., 136 (2014)
[535] Mahalov, A.; Moustaoui, M.; Nicolaenko, B., Three-dimensional instabilities in non-parallel shear stratified flows, Kinet. Relat. Models, 2, 215 (2008) · Zbl 1372.76051
[536] Ossakow, S. L.; Chaturvedi, P. K., Morphological studies of rising equatorial spread F bubbles, J. Geophys. Res.: Space Phys., 83, 2085 (1978)
[537] Tang, W.; Mahalov, A., Stochastic Lagrangian dynmics for charged flows in the E-F regions of ionosphere, Phys. Plasmas, 20, Article 032305 pp. (2013)
[538] Tang, W.; Mahalov, A., The response of plasma density to breaking inertial gravity wave in the lower regions of ionosphere, Phys. Plasmas, 21, Article 042901 pp. (2014)
[539] Yokoyama, T.; Su, S. Y.; Fukao, S., Plasma blobs and irregularities concurrently observed by ROCSAT-1 and equatorial atmosphere radar, J. Geophys. Res.: Space Phys., 112, 05311 (2007)
[540] Yokoyama, T.; Horinouchi, T.; Yamomoto, M.; Fukao, S., Modulation of the midlatitude ionospheric E region by atmospheric gravity waves through polarization electric field, J. Geophys. Res., 109, 12307 (2004)
[541] Yokoyama, T.; Yamomoto, M.; Fukao, S., Three-dimensional simulation on generation of polarization electric field in the midlatitude E-region ionosphere, J. Geophys. Res., 109, 01309 (2004)
[542] Mahalov, A.; Moustaoui, M.; Nicolaenko, B.; Tse, K. L., Computational studies of inertia-gravity waves radiated from upper tropospheric jets, Theoret. Comput. Fluid Dynam., 21, 399 (2007) · Zbl 1161.76479
[543] Mahalov, A.; Moustaoui, M., Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere, J. Comput. Phys., 228, 1294 (2009) · Zbl 1330.86008
[544] Mahalov, A.; Moustaoui, M., Time-filtered leapfrog integration of Maxwell equations using unstaggered temporal grids, J. Comput. Phys., 325, 98 (2016) · Zbl 1375.78041
[545] Jung, C. Y.; Kwon, B.; Mahalov, A.; Nguyen, T. B., Maxwell solutions in media with multiple random interfaces, Int. J. Numer. Anal. Model., 11, 194 (2014)
[546] Mahalov, A.; McDaniel, A., Long-range propagation through inhomogeneous turbulent atmosphere: analysis beyond phase screens, Phys. Scr., 94, Article 034003 pp. (2019)
[547] McDaniel, A.; Mahalov, A., Lensing effects in a random inhomogeneous medium, Opt. Express, 25, 16 (2017)
[548] McDaniel, A.; Mahalov, A., Stochastic mirage phenomenon in a random medium, Opt. Lett., 42, 2002 (2017)
[549] Schunk, R. W.; Nagy, A. E., Ionospheres: Physics, Plasma Physics and Chemistry (2000), Cambridge University Press: Cambridge University Press Cambridge, U.K
[550] Bennett, W. H., Magnetically self-focussing streams, Phys. Rev., 45, 890 (1934)
[551] Tonks, L., Theory and phenomena of high current densities in low pressure arcs, Trans. Electrochem. Soc., 72, 167 (1937)
[552] Bishop, A. S., Project Sherwood: The US Program in Controlled Fusion (1958), Addison-Wesley: Addison-Wesley Reading, MA
[553] Maron, Y., Experimental determination of the thermal, turbulent, and rotational ion motion and magnetic field profiles in imploding plasmas, Phys. Plasmas, 27, Article 060901 pp. (2020)
[554] Sinars, D. B.; Sweeney, M. A.; Alexander, C. S.; Ampleford, D. J.; Ao, T.; Apruzese, J. P.; Aragon, C.; Armstrong, D. J.; Austin, K. N.; Awe, T. J.; Baczewski, A. D., Review of pulsed power-driven high energy density physics research on Z at Sandia, Phys. Plasmas, 27, Article 070501 pp. (2020)
[555] Yu, E. P.; Awe, T. J.; Cochrane, K. R.; Yates, K. C.; Hutchinson, T. M.; Peterson, K. J.; Bauer, B. S., Use of hydrodynamic theory to estimate electrical current redistribution in metals, Phys. Plasmas, 27, Article 052703 pp. (2020)
[556] Ryutov, D. D., Characterizing the plasmas of dense \(Z\)-pinches, IEEE Trans. Plasma Sci., 43, 2363 (2015)
[557] Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.; Sefkow, A. B.; Sinars, D. B.; Rovang, D. C.; Peterson, K. J.; Cuneo, M. E., Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field, Phys. Plasmas, 17, Article 056303 pp. (2010)
[558] Lindemuth, I. R.; Kirkpatrick, R. C., Parameter space for magnetized fuel targets in inertial confinement fusion, Nucl. Fusion, 23, 263 (1983)
[559] Awe, T. J.; McBride, R. D.; Jennings, C. A.; Lamppa, D. C.; Martin, M. R.; Rovang, D. C.; Slutz, S. A.; Cuneo, M. E.; Owen, A. C.; Sinars, D. B.; Tomlinson, K., Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field, Phys. Rev. Lett., 111, Article 235005 pp. (2013)
[560] Seyler, C. E.; Martin, M. R.; Hamlin, N. D., Helical instability in MagLIF due to axial flux compression by low-density plasma, Phys. Plasmas, 25, Article 062711 pp. (2018)
[561] Reipurth, B.; Bally, J., Herbig-haro flows: Probes of early stellar evolution, Annu. Rev. Astron. Astrophys., 39, 403 (2001)
[562] Ciardi, A.; Ampleford, D. J.; Lebedev, S. V.; Stehle, C., Curved Herbig-Haro jets: Simulations and experiments, Astrophys. J., 678, 968 (2008)
[563] Pringle, J. E., Accretion discs in astrophysics, Annu. Rev. Astron. Astrophys., 19, 137 (1981)
[564] Ryutov, D.; Drake, R. P.; Kane, J.; Liang, E.; Remington, B. A.; Wood-Vasey, W. M., Similarity criteria for the laboratory simulation of supernova hydrodynamics, Astrophys. J., 518, 821 (1999)
[565] Bellan, P. M.; You, S.; Hsu, S. C., Simulating astrophysical jets in laboratory experiments, (Kyrala, G. A., High Energy Density Laboratory Astrophysics (2005), Springer: Springer Dordrecht) · Zbl 1132.85301
[566] Arnett, W. D., Supernova theory and supernova 1987A, Astrophys. J., 319, 136 (1987)
[567] Arnett, W. D.; Bahcall, J. N.; Kirshner, R. P.; Woosley, S. E., Supernova 1987A, Annu. Rev. Astron. Astrophys., 27, 629 (1989)
[568] Arnett, D.; Fryxell, B.; Mueller, E., Instabilities and nonradial motion in SN 1987A, Astrophys. J., 341, L63 (1989)
[569] Hammer, N. J.; Janka, H. T.; Müller, E., Three-dimensional simulations of mixing instabilities in supernova explosions, Astrophys. J., 714, 1371 (2010)
[570] Kifonidis, K.; Plewa, T.; Janka, H. T.; Müller, E., Non-spherical core collapse supernovae-I. Neutrino-driven convection, Rayleigh-Taylor instabilities, and the formation and propagation of metal clumps, Astron. Astrophys., 408, 621 (2003)
[571] Kifonidis, K.; Plewa, T.; Scheck, L.; Janka, H. T.; Müller, E., Non-spherical core collapse supernovae-II. The late-time evolution of globally anisotropic neutrino-driven explosions and their implications for SN 1987 A, Astron. Astrophys., 453, 661 (2006)
[572] Khokhlov, A. M., Propagation of turbulent flames in supernovae, Astrophys. J., 449, 695 (1995)
[573] Meier, D. L.; Epstein, R. I.; Arnett, W. D.; Schramm, D. N., Magnetohydrodynamic phenomena in collapsing stellar cores, Astrophys. J., 204, 869 (1976)
[574] LeBlanc, J. M.; Wilson, J. R., A numerical example of the collapse of a rotating magnetized star, Astrophys. J., 161, 541 (1970)
[575] Wheeler, J. C.; Meier, D. L.; Wilson, J. R., Asymmetric supernovae from magnetocentrifugal jets, Astrophys. J., 568, 807 (2002)
[576] Remming, I. S.; Khokhlov, A. M., The classification of magnetohydrodynamic regimes of thermonuclear combustion, Astrophys. J., 794, 87 (2014)
[577] Remming, I. S.; Khokhlov, A. M., The internal structure and propagation of magnetohydrodynamical thermonuclear flames, Astrophys. J., 831, 162 (2016)
[578] Aschenbach, B.; Egger, R.; Trümper, J., Discovery of explosion fragments outside the Vela supernova remnant shock-wave boundary, Nature, 373, 587 (1995)
[579] Bucciantini, N.; Amato, E.; Bandiera, R.; Blondin, J. M.; Del Zanna, L., Magnetic Rayleigh-Taylor instability for pulsar wind nebulae in expanding supernova remnants, Astron. Astrophys., 423, 253 (2004)
[580] Uchiyama, Y.; Aharonian, F. A.; Tanaka, T.; Takahashi, T.; Maeda, Y., Extremely fast acceleration of cosmic rays in a supernova remnant, Nature, 449, 576 (2007)
[581] Chang, P. Y.; Fiksel, G.; Hohenberger, M.; Knauer, J. P.; Betti, R.; Marshall, F. J.; Meyerhofer, D. D.; Séguin, F. H.; Petrasso, R. D., Fusion yield enhancement in magnetized laser-driven implosions, Phys. Rev. Lett., 107, Article 035006 pp. (2011)
[582] Srinivasan, B.; Tang, X. Z., The mitigating effect of magnetic fields on Rayleigh-Taylor unstable inertial confinement fusion plasmas, Phys. Plasmas, 20, Article 056307 pp. (2013)
[583] Aslangil, D.; Farley, Z.; Lawrie, A. G.W.; Banerjee, A., Rayleigh-Taylor Instability with varying periods of zero acceleration, J. Fluids Eng., 142, 121103 (2020)
[584] Aslangil, D.; Livescu, D.; Banerjee, A., Effects of atwood and reynolds numbers on the evolution of buoyancy-driven homogeneous variable-density turbulence, J. Fluid Mech., 895, A12 (2020) · Zbl 1460.76347
[585] Athira, C. M.; Rajesh, G.; Mohanan, S.; Parthasarathy, A., Flow interactions on supersonic projectiles in transitional ballistic regimes, J. Fluid Mech., 894, A27 (2020) · Zbl 1460.76603
[586] Azarova, O. A.; Krasnobaev, K. V.; Kravchenko, O. V.; Lapushkina, T. A.; Erofeev, A. V., Redistribution of energy in a viscous heat-conductive medium during the interaction of a shock wave with a temperature layered plasma region, J. Phys.: Conf. Ser., 012004 (2020), IOP Publishing
[587] Boffetta, G.; Borgnino, M.; Musacchio, S., Scaling of Rayleigh-Taylor mixing in porous media, Phys. Rev. Fluids, 5, 062501 (2020)
[588] Borisov, S. P.; Kudryavtsev, A. N., Development of the Rayleigh-Taylor instability. Results of numerical simulation at low reynolds numbers, AIP Conf. Proc., 030019 (2020), AIP Publishing LLC
[589] Canfield, J.; Denissen, N.; Francois, M.; Gore, R.; Rauenzahn, R.; Reisner, J.; Shkoller, S., A comparison of interface growth models applied to Rayleigh-Taylor and Richtmyer-Meshkov instabilities, J. Fluids Eng., 142, 121108 (2020)
[590] Cheeda, V. K., Turbulent flame propagation in corn dust clouds formed in confined and open spaces, SN Appl. Sci., 2, 1415 (2020)
[591] Di Stefano, C. A.; Doss, F. W.; Merritt, E. C.; Haines, B. M.; Desjardins, T. R.; DeVolder, B. G.; Flippo, K. A.; Kot, L.; Robey, H. F.; Schmidt, D. W.; Millot, M., Experimental measurement of two copropagating shocks interacting with an unstable interface, Phys. Rev. E, 102, 043212 (2020)
[592] Do, A.; Pickworth, L. A.; Kozioziemski, B. J.; Angulo, A. M.; Hall, G. N.; Nagel, S. R.; Bradley, D. K.; Mccarville, T.; Ayers, J. M., Fresnel zone plate development for x-ray radiography of hydrodynamic instabilities at the National Ignition Facility, Appl. Optics, 59, 10777 (2020)
[593] Doludenko, A. N., Experimental and numerical investigation of the Rayleigh-Taylor instability of the newtonian and dilatant fluid system, Phys. Scr., 95, 115207 (2020)
[594] Duda, D.; Yanovych, V.; Uruba, V.; Němec, M.; Žitek, P., Vortices inside a single-stage axial air turbine captured by particle image velocimetry, MATEC Web of Conf., 05002 (2020), EDP Sciences
[595] Durand, O.; Soulard, L.; Colombet, L.; Prat, R., Influence of the phase transitions of shock-loaded tin on microjetting and ejecta production using molecular dynamics simulations, J. Appl. Phys., 127, 175901 (2020)
[596] El Rafei, M.; Thornber, B., Numerical study and buoyancy-drag modeling of bubble and spike distances in three-dimensional spherical implosions, Phys. Fluids, 32, 124107 (2020)
[597] Elizarova, T.; Zlotnik, A., On aggregated regularized equations for homogeneous binary gas mixture flows with viscous compressible components, AIP Conf. Proc., 210016 (2020), AIP Publishing LLC
[598] Fan, Z.; Dong, M., Multiple eigenmodes of the Rayleigh-Taylor instability observed for a fluid interface with smoothly varying density. III. excitation and nonlinear evolution, Phys. Rev. E, 101, 063103 (2020)
[599] Farmakis, P. S.; Tsoutsanis, P.; Nogueira, X., Weno schemes on unstructured meshes using a relaxed a posteriori mood limiting approach, Comput. Methods Appl. Mech. Eng., 363, 112921 (2020) · Zbl 1436.76037
[600] Fu, Y.; Yu, C.; Li, X., Energy transport characteristics of converging Richtmyer-Meshkov instability, AIP Adv., 10, 105302 (2020)
[601] Gancedo, F.; Granero-Belinchón, R.; Scrobogna, S., Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium, Ann. Inst. Henri Poincaré, Anal. Nonlinéaire, 37, 1299 (2020) · Zbl 1459.76053
[602] Grinstein, F. F.; Saenz, J. A.; Rauenzahn, R. M.; Germano, M.; Israel, D. M., Dynamic bridging modeling for coarse grained simulations of shock driven turbulent mixing, Comput. & Fluids, 199, 104430 (2020) · Zbl 1519.76064
[603] Guo, X.; Wei, Y.; Zhang, Y., Temporal-spatial evolution of kinetic and thermal energy dissipation rates in a three-dimensional turbulent Rayleigh-Taylor mixing zone, Entropy, 22, 652 (2020)
[604] Guo, X.; Zhai, Z.; Ding, J.; Si, T.; Luo, X., Effects of transverse shock waves on early evolution of multi-mode chevron interface, Phys. Fluids, 32, 106101 (2020)
[605] Haines, B. M.; Shah, R. C.; Smidt, J. M.; Albright, B. J.; Cardenas, T.; Douglas, M. R.; Forrest, C.; Glebov, V. Yu; Gunderson, M. A.; Hamilton, C., The rate of development of atomic mixing and temperature equilibration in inertial confinement fusion implosions, Phys. Plasmas, 27, 102701 (2020)
[606] Haines, B. M.; Keller, D. E.; Marozas, J. A.; McKenty, P. W.; Anderson, K. S.; Collins, T. J.B.; Dai, W. W.; Hall, M. L.; Jones, S.; McKay Jr, M. D., Coupling laser physics to radiation-hydrodynamics, Comput. & Fluids, 201, 104478 (2020) · Zbl 07196722
[607] Haines, B. M.; Shah, R. C.; Smidt, J. M.; Albright, B. J.; Cardenas, T.; Douglas, M. R.; Forrest, C.; Glebov, V. Yu; Gunderson, M. A.; Hamilton, C. E., Observation of persistent species temperature separation in inertial confinement fusion mixtures, Nat. Comm., 11, 544 (2020)
[608] Hillier, A., Self-similar solutions of asymmetric Rayleigh-Taylor mixing, Phys. Fluids, 32, 015103 (2020)
[609] Hu, X.; Liang, H.; Wang, H., Lattice boltzmann method simulations of the immiscible Rayleigh-Taylor instability with high reynolds numbers, Acta Phys. Sin., 69, 044701 (2020)
[610] Huntington, C. M.; Raman, K. S.; Nagel, S. R.; MacLaren, S. A.; Baumann, T.; Bender, J. D.; Prisbrey, S. T.; Simmons, L.; Wang, P.; Zhou, Y., Split radiographic tracer technique to measure the full width of a high energy density mixing layer, High Energy Dens. Phys., 35, 100733 (2020)
[611] Jain, S. S.; Mani, A.; Moin, P., A conservative diffuse-interface method for compressible two-phase flows, J. Comput. Phys., 418, 109606 (2020) · Zbl 07506170
[612] Kiprijanovič, O.; Ardaravičius, L.; Gradauskas, J.; Šimkevičius, Č.; Keršulis, S.; Ašmontas, S., Sn border instability, magnetic flux trapping and cumulative effect during pulsed sn switching of high quality YBaCuO thin films, Supercond. Sci. Technol., 33, 095013 (2020)
[613] Li, Y.; Samtaney, R.; Bond, D.; Wheatley, V., Richtmyer-Meshkov Instability of an imploding flow with a two-fluid plasma model, Phys. Rev. Fluids, 5, 113701 (2020)
[614] Li, M.; Ding, J.; Zhai, Z.; Si, T.; Liu, N.; Huang, S.; Luo, X., On divergent Richtmyer-Meshkov instability of a light/heavy interface, J. Fluid Mech, 901, A38 (2020) · Zbl 1460.76621
[615] Li, Y.; Diddens, C.; Segers, T.; Wijshoff, H.; Verluis, M.; Lohse, D., Rayleigh-Taylor Instability by segregation in an evaporating multicomponent microdroplet, J. Fluid Mech., 899, A22 (2020) · Zbl 1460.76319
[616] Li, Z.; Wang, L.; Wu, J.; Ye, W., Numerical study on the laser ablative Rayleigh-Taylor instability, Acta Mech. Sin., 36, 789 (2020)
[617] Liang, Y.; Liu, L.; Zhai, Z.; Si, T.; Wen, C.-Y., Evolution of shock-accelerated heavy gas layer, J. Fluid Mech., 886, A7 (2020) · Zbl 1460.76618
[618] Liang, Y.; Zhai, Z.; Luo, X.; Wen, C.-Y., Interfacial instability at a heavy/light interface induced by rarefaction waves, J. Fluid Mech., 885, A42 (2020) · Zbl 1460.76330
[619] Liu, S.; Cao, J.; Zhong, C., Multiscale kinetic inviscid flux extracted from a gas-kinetic scheme for simulating incompressible and compressible flows, Phys. Rev. E, 102, 033310 (2020)
[620] Liu, H.-C.; Yu, Bi.; Chen, H.; Zhang, B.; Xu, H.; Liu, H., Contribution of viscosity to the circulation deposition in the Richtmyer-Meshkov instability, J. Fluid Mech., 895, A10 (2020) · Zbl 1460.76323
[621] Lugomer, S., Nano-wrinkles, compactons, and wrinklons associated with laser-induced Rayleigh-Taylor instability: I. bubble environment, Laser Part. Beams, 38, 101 (2020)
[622] Luo, T.; Wang, J.; Xie, C.; Wan, M.; Chen, S., Effects of compressibility and atwood number on the single-mode Rayleigh-Taylor instability, Phys. Fluids, 32, 012110 (2020)
[623] Matsuoka, C., Nonlinear dynamics of double-layer unstable interfaces with non-uniform velocity shear, Phys. Fluids, 32, 102109 (2020)
[624] Matsuoka, C.; Nishihara, K., Nonlinear interaction between bulk point vortices and an unstable interface with nonuniform velocity shear such as Richtmyer-Meshkov instability, Phys. Plasmas, 27, 052305 (2020)
[625] Matsuoka, C.; Nishihara, K.; Cobos-Campos, F., Linear and nonlinear interactions between an interface and bulk vortices in Richtmyer-Meshkov instability, Phys. Plasmas, 27, 112301 (2020)
[626] Matys, M.; Nishihara, K.; Kecova, M.; Psikal, J.; Korn, G.; Bulanov, S. V., Laser-driven generation of collimated quasi-monoenergetic proton beam using double-layer target with modulated interface, High Energy Dens. Phys., 36, 100844 (2020)
[627] Nguyen, F.; Laval, J.-P.; Dubrulle, B., Characterizing most irregular small-scale structures in turbulence using local Hölder exponents, Phys. Rev. E, 102, 063105 (2020)
[628] Noble, C. D.; Herzog, J. M.; Rothamer, D. A.; Ames, A. M.; Oakley, J.; Bonazza, R., Scalar power spectra and scalar structure function evolution in the Richtmyer-Meshkov instability upon reshock, J. Fluids Eng., 142, 121102 (2020)
[629] Oughton, S.; Matthaeus, W. H., Critical balance and the physics of magnetohydrodynamic turbulence, Astrophys. J., 897, 37 (2020)
[630] Peng, Q.; Bao, B.; Yang, C.; Zhang, L., Simulations of young type ia supernova remnants undergoing shock acceleration in a turbulent medium, Astrophys. J., 891, 75 (2020)
[631] Pereira, F. S.; Grinstein, F. F.; Israel, D., Effect of the numerical discretization scheme in shock-driven turbulent mixing simulations, Comput. & Fluids, 201, 104487 (2020) · Zbl 1519.76185
[632] Pfeiffer, P.; Zeng, Q.; Tan, B. H.; Ohl, C.-D., Merging of soap bubbles and why surfactant matters, Appl. Phys. Lett., 116, 103702 (2020)
[633] Praturi, D. S.; Girimaji, S. S., Magnetic-internal-kinetic energy interactions in high-speed turbulent magnetohydrodynamic jets, J. Fluids Eng., 142, 101213 (2020)
[634] Ramani, R.; Shkoller, S., A multiscale model for Rayleigh-Taylor and Richtmyer-Meshkov instabilities, J. Comput. Phys., 405, 109177 (2020) · Zbl 1453.76140
[635] Ruan, Y.; Zhang, Y.; Tian, B.; Zhang, X., Density-ratio-invariant mean-species profile of classical Rayleigh-Taylor mixing, Phys. Rev. Fluids, 5, 054501 (2020)
[636] Sethuraman, Y. P.M.; Sinha, K., Modeling of thermodynamic fluctuations in canonical shock-turbulence interaction, AIAA J., 58, 3076 (2020)
[637] Sethuraman, Y. P.M.; Sinha, K., Effect of turbulent mach number on the thermodynamic fluctuations in canonical shock-turbulence interaction, Comput. & Fluids, 197, 104354 (2020) · Zbl 1519.76132
[638] Soulard, O.; Griffond, J.; Gréa, B-J; Viciconte, G., Permanence of large eddies in decaying variable-density homogeneous turbulence with small mach numbers, Phys. Rev. Fluids, 5, 064613 (2020)
[639] Starinskiy, S. V.; Rodionov, A. A.; Shukhov, Y. G.; Safonov, A. I.; Maximovskiy, E. A.; Sulyaeva, V. S.; Bulgakov, A. V., Formation of periodic superhydrophilic microstructures by infrared nanosecond laser processing of single-crystal silicon, Appl. Surface Sci.., 512, 145753 (2020)
[640] Sun, R.; Ding, J.; Zhai, Z.; Si, T.; Luo, X., Convergent Richtmyer-Meshkov instability of heavy gas layer with perturbed inner surface, J. Fluid Mech., 902, A3 (2020) · Zbl 1460.76626
[641] Sun, P.; Ding, J.; Huang, S.; Luo, X.; Cheng, W., Microscopic Richtmyer-Meshkov instability under strong shock, Phys. Fluids, 32, 024109 (2020)
[642] Sun, W.; An, W. M.; Zhong, J. Y., Two-dimensional numerical study of effect of magnetic field on laser-driven Kelvin-Helmholtz instability, Acta Phys. Sin., 69, 244701 (2020)
[643] Sun, Y. B.; Wang, C., Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field, Phys. Rev. E, 101, 053110 (2020)
[644] Sun, Y. B.; Wang, C.; Piriz, A. R., A unified model to study the effects of elasticity, viscosity, and magnetic fields on linear Richtmyer-Meshkov instability, J. Appl. Phys., 128, 125901 (2020)
[645] Sun, Y. B.; Zeng, R. H.; Tao, J. J., Elastic Rayleigh-Taylor and Richtmyer-Meshkov instabilities in spherical geometry, Phys. Fluids, 32, 124101 (2020)
[646] Tang, J.; Zhang, F.; Luo, X.; Zhai, Z., Effect of atwood number on convergent Richtmyer-Meshkov instability, Acta Mech. Sinica (2020)
[647] Vadivukkarasan, M., Temporal instability characteristics of Rayleigh-Taylor and Kelvin-Helmholtz mechanisms of an inviscid cylindrical interface, Meccanica, 56, 117 (2021) · Zbl 1521.76134
[648] Velikovich, A. L.; Schmitt, A. J.; Zulick, C.; Aglitskiy, Y.; Karasik, M.; Obenschain, S. P.; Wouchuk, J. G.; Cobos Campos, F., Multi-mode hydrodynamic evolution of perturbations seeded by isolated surface defects, Phys. Plasmas, 27, 102706 (2020)
[649] Wang, L.; Ye, W.; Chen, Z., Review of hydrodynamic instabilities in inertial confinement fusion implosions, High Power Laser and Part. Beams, 33, 012001 (2021)
[650] Wang, X.; Hu, X.; Wang, S.; Pan, H., A simplified approximate analytical model for Rayleigh-Taylor instability in elastic-plastic solid and viscous fluid with thicknesses, Chin. Phys. B (2020)
[651] Wang, Y.; Dong, G., Interface evolutions and growth predictions of mixing zone on premixed flame interface during RM instability, Chin. J. Theor. Appl. Mech., 52, 1655 (2020)
[652] Xiao, M.; Zhang, Y.; Tian, B., Unified prediction of reshocked Richtmyer-Meshkov mixing with K-L model, Phys. Fluids, 32, 032107 (2020)
[653] Xiao, M.; Zhang, Y.; Tian, B., Modeling of turbulent mixing with an improved K-L model, Phys. Fluids, 32, 092104 (2020)
[654] Xue, K.; Shi, X.; Zeng, J.; Tian, B.; Han, P.; Li, Ji.; Liu, L.; Meng, B.; Guo, X.; Bai, C., Explosion-driven interfacial instabilities of granular media, Phys. Fluids, 32, 084104 (2020)
[655] Yan, B.; Li, Q.; Li, X.; Huang, S.; Wang, W.; Fu, S., Numerical study of the slip line instabilities in shock-wavywall reflection, Sci. China-Phys. Mech. Astron., 50, 104709 (2020)
[656] Yao, P.; Cai, H.; Yan, X.; Zhang, W.; Du, B.; Tian, J.; Zhang, E.; Wang, X.; Zhu, S., Kinetic study of transverse electron-scale interface instability in relativistic shear flows, Matter Radiat. Extremes, 5, 054403 (2020)
[657] Ye, H.; Lai, H.; Li, D.; Gan, Ya.; Lin, L.; Xu, A., Knudsen number effects on two-dimensional Rayleigh-Taylor instability in compressible fluid: based on a discrete boltzmann method, Entropy, 22, 500 (2020)
[658] Youngs, D. L.; Thornber, B., Early time modifications to the buoyancy-drag model for Richtmyer-Meshkov mixing, J. Fluids Eng., 142, 121107 (2020)
[659] Yu, B.; He, M.; Zhang, B.; Liu, H., Two-stage growth mode for lift-off mechanism in oblique shock-wave/jet interaction, Phys. Fluids, 32, 116105 (2020)
[660] Zanella, R.; Tegze, G.; Le Tellier, R.; Henry, H., Two-and three-dimensional simulations of Rayleigh-Taylor instabilities using a coupled Cahn-Hilliard/Navier-Stokes model, Phys. Fluids, 32, 124115 (2020)
[661] Zeng, R. H.; Tao, J. J.; Sun, Y. B., Three-dimensional viscous Rayleigh-Taylor instability at the cylindrical interface, Phys. Rev. E, 102, 023112 (2020)
[662] Zhai, Z.; Gu, X.; Ting, S., Experimental study on bubble competition of shock-accelerated saw-tooth interface, Acta Aerodynamica Sinica, 38, 339 (2020)
[663] Zhang, H.; Betti, R.; Yan, R.; Aluie, H., Nonlinear bubble competition of the multimode ablative Rayleigh-Taylor instability and applications to inertial confinement fusion, Phys. Plasmas, 27, 122701 (2020)
[664] Zhang, Y.; He, Z.; Xie, H.; Xiao, M.; Tian, B., Methodology for determining coefficients of turbulent mixing model, J. Fluid Mech., 905, A26 (2020) · Zbl 1460.76428
[665] Zhang, Y.; Ni, W.; Ruan, Y.; Xie, H., Quantifying mixing of Rayleigh-Taylor turbulence, Physi. Rev. Fluids, 5, 104501 (2020)
[666] Zhang, Y.; Ruan, Y.; Xie, H.; Tian, B., Mixed mass of classical Rayleigh-Taylor mixing at arbitrary density ratios, Phys. Fluids, 32, 011702 (2020)
[667] Zhang, Z.; Fu, Q.; Zhang, H.; Yuan, X.; Yu, K., Experimental and numerical investigation on interfacial mass transfer mechanism for rayleigh convection in Hele-Shaw cell, Ind. Eng. Chem. Res., 59, 10195 (2020)
[668] Zhao, Y.; Xia, M.; Cao, Y., A study of bubble growth in the compressible Rayleigh-Taylor and Richtmyer-Meshkov instabilities, AIP Adv., 10, 015056 (2020)
[669] Zhao, Z.; Wang, P.; Liu, N.; Lu, X., Analytical model of nonlinear evolution of single-mode Rayleigh-Taylor instability in cylindrical geometry, J. Fluid Mech., 900, A24 (2020) · Zbl 1460.76339
[670] Zhao, Z.; Liu, N.; Lu, X., Kinetic energy and enstrophy transfer in compressible Rayleigh-Taylor turbulence, J. Fluid Mech., 904, A37 (2020) · Zbl 1460.76522
[671] Zheng, H.; Chen, Q.; Meng, B.; Zeng, J.; Tian, B., On the nonlinear growth of multiphase Richtmyer-Meshkov instability in dilute gas-particles flow, Chin. Phys. Lett., 37, 015201 (2020)
[672] Zou, L.; Wu, Q.; Li, X., Research progress of general Richtmyer-Meshkov instability, Sci. China-Phys. Mech. Astron., 50, 104702 (2020)
[673] Zhou, Y.; Groom, M.; Thornber, B., Dependence of enstrophy transport and mixed mass on dimensionality and initial conditions in the Richtmyer-Meshkov instability induced flows, J. Fluids Eng., 142, 121104 (2020)
[674] Zhou, Z.; Ding, J.; Zhai, Z.; Cheng, W.; Luo, X., Mode coupling in converging Richtmyer-Meshkov instability of dual-mode interface, Acta Mech. Sinica, 36, 356 (2019) · Zbl 07679143
[675] Zulick, C.; Aglitskiy, Y.; Karasik, M.; Schmitt, A. J.; Velikovich, A. L.; Obenschain, S. P., Multimode hydrodynamic instability growth of preimposed isolated defects in ablatively driven foils, Phys. Rev. Lett., 125, 055001 (2020)
[676] Zulick, C.; Aglitskiy, Y.; Karasik, M.; Schmitt, A. J.; Velikovich, A. L.; Obenschain, S. P., Isolated defect evolution in laser accelerated targets, Phys. Plasmas, 27, 072706 (2020)
[677] Bao, B.; Peng, Q.; Yang, C.; Zhang, L., Evolutions of young type Ia supernova remnants with two initial density profiles in a turbulent medium, Astrophys. J., 909, 173 (2021)
[678] Bender, J. D.; Schilling, O.; Raman, K. S.; Managan, R. A.; Olson, B. J.; Copeland, S. R.; Ellison, C. L.; Erskine, D. J.; Huntington, C. M.; Morgan, B. E.; Nagel, S. R.; Prisbrey, S. T.; Pudliner, B. S.; Sterne, P. A.; Wehrenberg, C. E.; Zhou, Y., Simulation and flow physics of a shocked and reshocked high-energy-density mixing layer, J. Fluid Mech., 915, A84 (2021) · Zbl 1461.76007
[679] Frantz, R. A.S.; Deskos, G.; Laizet, S.; Silvestrini, J. H., High-fidelity simulations of gravity currents using a high-order finite-difference spectral vanishing viscosity approach, Comput. & Fluids, 221, 104902 (2021) · Zbl 1521.76538
[680] García-Rubio, F.; Betti, R.; Sanz, J.; Aluie, H., Magnetic-field generation and its effect on ablative Rayleigh-Taylor instability in diffusive ablation fronts, Phys. Plasmas, 28, 012103 (2021)
[681] Grinstein, F. F.; Pereira, F. S., Impact of numerical hydrodynamics in turbulent mixing transition simulations, Phys. Fluids, 33, 035126 (2021)
[682] Grinstein, F. F.; Saenz, J. A.; Germano, M., Coarse grained simulations of shock-driven turbulent material mixing, Phys. Fluids, 33, 035131 (2021)
[683] Groom, M.; Thornber, B., Reynolds number dependence of turbulence induced by the Richtmyer-Meshkov instability using direct numerical simulations, J. Fluid Mech., 908, A31 (2021) · Zbl 1461.76208
[684] Haines, B. M.; Sauppe, J. P.; Keiter, P. A.; Loomis, E. N.; Morrow, T.; Montgomery, D. S.; Kuettner, L.; Patterson, B. M.; Quintana, T. E.; Field, J., Constraining computational modeling of indirect drive double shell capsule implosions using experiments, Phys. Plasmas, 28, 032709 (2021)
[685] Heidt, L.; Flaig, M.; Thornber, B., The effect of initial amplitude and convergence ratio on instability development and deposited fluctuating kinetic energy in the single-mode Richtmyer-Meshkov instability in spherical implosions, Comput. & Fluids, 218, 104842 (2021) · Zbl 1521.76141
[686] Kaman, T.; Edwards, A.; McGarigal, J., Performance analysis of the parallel CFD code for turbulent mixing simulations, J. Comput. Sci. Edu., 12, 49 (2021)
[687] Liang, Y.; Liu, L.; Zhai, Z.; Si, T.; Luo, X., Universal perturbation growth of Richtmyer-Meshkov instability for minimum-surface featured interface induced by weak shock waves, Phys. Fluids, 33, 032110 (2021)
[688] Matthaeus, W. H., Turbulence in space plasmas: who needs it?, Phys. Plasmas, 28, 032306 (2021)
[689] Pellone, S.; Di Stefano, C. A.; Rasmus, A. M.; Kuranz, C. C.; Johnsen, E., Vortex-sheet modeling of hydrodynamic instabilities produced by an oblique shock interacting with a perturbed interface in the hed regime, Phys. Plasmas, 28, 022303 (2021)
[690] Peng, N.; Yang, Y.; Wu, Ji.; Xiao, Z., Mechanism and modelling of the secondary baroclinic vorticity in the Richtmyer-Meshkov instability, J. Fluid Mech., 911, A56 (2021) · Zbl 1461.76179
[691] Pereira, F. S.; Grinstein, F. F.; Israel, D. M.; Rauenzahn, R., Molecular viscosity and diffusivity effects in transitional and shock-driven mixing flows, Phys. Rev. E, 103, 013106 (2021)
[692] Piriz, S. A.; Piriz, A. R.; Tahir, N. A.; Richter, S.; Bestehorn, M., Rayleigh-Taylor Instability in elastic-plastic solid slabs bounded by a rigid wall, Phys. Rev. E, 103, 023105 (2021)
[693] Podvalny, S. L.; Vasiljev, E. M., Intensification of heat transfer in chaotic modes, IOP Conf. Ser., 012046 (2021), IOP Publishing
[694] Popescu Braileanu, B.; Lukin, V. S.; Khomenko, E.; de Vicente, Á., Two-fluid simulations of Rayleigh-Taylor instability in a magnetized solar prominence thread. I. effects of prominence magnetization and mass loading, Astron. Astrophys., 646, A93 (2021)
[695] Pulido, J.; da Silva, R. D.; Livescu, D.; Hamann, B., Multiresolution classification of turbulence features in image data through machine learning, Comput. & Fluids, 214, 104770 (2021) · Zbl 1521.76164
[696] Sabet, N.; Hassanzadeh, H.; De Wit, A.; Abedi, J., Scalings of Rayleigh-Taylor instability at large viscosity contrasts in porous media, Phys. Rev. Lett., 126, 094501 (2021)
[697] Saenz, J. A.; Aslangil, D.; Livescu, D., Filtering, averaging, and scale dependency in homogeneous variable density turbulence, Phys. Fluids, 33, 025115 (2021)
[698] Song, Y.; Wang, P.; Wang, L., Numerical investigations of Rayleigh-Taylor instability with a density gradient layer, Comput. & Fluids, 220, 104869 (2021) · Zbl 1521.76251
[699] Vogler, T. J.; Hudspeth, M. C., Tamped Richtmyer-Meshkov instability experiments to probe high-pressure material strength, J. Dynamic Behavior Mater. (2021)
[700] Wang, Z.; Xue, K.; Han, P., Bell-Plesset Effects on Rayleigh-Taylor instability at cylindrically divergent interfaces between viscous fluids, Phys. Fluids, 33, 034118 (2021)
[701] Wu, J.; Liu, H.; Xiao, Z., Refined modelling of the single-mode cylindrical Richtmyer-Meshkov instability, J. Fluid Mech., 908, A9 (2021) · Zbl 1461.76341
[702] Xiao, M.; Zhang, Y.; Tian, B., A K-L model with improved realizability for turbulent mixing, Phys. Fluids, 33, 022104 (2021)
[703] Xu, L.; Shen, H.; Wei, J., Mathematical foundations of the three-dimensional neutron hydrodynamics coupled transport equations, Ann. Nucl. Energy, 156, 108198 (2021)
[704] Yoder, D. A.; Orkwis, P. D., On the use of optimization techniques for turbulence model calibration, Comput. & Fluids, 214, 104752 (2021) · Zbl 1521.76266
[705] Yuana, K. A.; Jalaali, B.; Budiana, E. P.; Pranowo; Widyaparaga, A.; Indarto; Deendarlianto, Lattice Boltzmann simulation of the Rayleigh-Taylor instability (RTI) during the mixing of the immiscible fluids, Eur. J. Mech. B Fluids, 85, 276 (2021) · Zbl 1479.76077
[706] Zhu, T.; Jia, Z.; Wang, X.; Zhang, L.; Yang, Z.; Lin, R.; Liu, J., Experimental and simulation study of forced convection in vertical eccentric annular space, Int. J. Therm. Sci., 161, 106735 (2021)
[707] McDaniel, A.; Mahalov, A., Coupling of paraxial and white-noise approximations of the Helmholtz equation in randomly layered media, Physica D, 409, 132491 (2020) · Zbl 07507340
[708] Cheng, B.; Glimm, J.; Sharp, D. H., The \(\alpha\) s and \(\theta\) s in Rayleigh-Taylor and Richtmyer-Meshkov instabilities, Physica D, 404, 132356 (2020) · Zbl 1490.76103
[709] Glimm, J.; Cheng, B.; Sharp, D. H.; Kaman, T., A crisis for the verification and validation of turbulence simulations, Physica D, 404, 132346 (2020) · Zbl 1490.76117
[710] Narayanan, K.; Samtaney, R., On the role of thermal fluctuations in Rayleigh-Taylor mixing, Physica D, 402, 132241 (2020)
[711] Chang, C. H.; Douglass, R. W., Numerical simulations of onset and growth of Rayleigh-Taylor instability involving solids in converging geometry, Physica D, 411, 132607 (2020)
[712] Horne, J. T.; Lawrie, A. G.W., Aspect-ratio-constrained Rayleigh-Taylor instability, Physica D, 406, 132442 (2020)
[713] Morgan, B. E.; Black, W. J., Parametric investigation of the transition to turbulence in Rayleigh-Taylor mixing, Physica D, 402, 132223 (2020) · Zbl 1453.76059
[714] Braun, N. O.; Gore, R. A., A passive model for the evolution of subgrid-scale instabilities in turbulent flow regimes, Physica D, 404, 132373 (2020) · Zbl 1490.76101
[715] Grinstein, F. F., Coarse grained simulation of convectively driven turbulent mixing, transition, and turbulence decay, Physica D, 407, 132419 (2020)
[716] Bian, X.; Aluie, H.; Zhao, D.; Zhang, H.; Livescu, D., Revisiting the late-time growth of single-mode Rayleigh-Taylor instability and the role of vorticity, Physica D, 403, 132250 (2020)
[717] Kokkinakis, I. W.; Drikakis, D.; Youngs, D. L., Vortex morphology in Richtmyer-Meshkov-induced turbulent mixing, Physica D, 407, 132459 (2020)
[718] Kurien, S.; Doss, F. W.; Livescu, D.; Flippo, K., Extracting a mixing parameter from 2d radiographic imaging of variable-density turbulent flow, Physica D, 405, 132354 (2020) · Zbl 1504.76047
[719] Soulard, O.; Guillois, F.; Griffond, J.; Sabelnikov, V.; Simoëns, S., A two-scale langevin pdf model for Richtmyer-Meshkov turbulence with a small atwood number, Physica D, 403, 132276 (2020) · Zbl 1490.76115
[720] Guo, W.; Zhang, Q., Universality and scaling laws among fingers at Rayleigh-Taylor and Richtmyer-Meshkov unstable interfaces in different dimensions, Physica D, 403, 132304 (2020) · Zbl 1490.76104
[721] Noble, C. D.; Herzog, J. M.; Ames, A. M.; Oakley, J.; Rothamer, D. A.; Bonazza, R., High speed PLIF study of the instability upon Richtmyer-Meshkov re-shock, Physica D, 410, 132519 (2020) · Zbl 1486.76040
[722] Margolin, L. G.; Plesko, C. S.; Reisner, J. M., A finite scale model for shock structure, Physica D, 403, 132308 (2020) · Zbl 1490.76127
[723] Schilling, O., A buoyancy-shear-drag-based turbulence model for Rayleigh-Taylor, reshocked Richtmyer-Meshkov, and Kelvin-Helmholtz mixing, Physica D, 402, 132238 (2020) · Zbl 1453.76055
[724] Mikaelian, K. O.; Olson, B. J., On modeling Richtmyer-Meshkov turbulent mixing widths, Physica D, 402, 132243 (2020)
[725] Aslangil, D.; Livescu, D.; Banerjee, A., Variable-density buoyancy-driven turbulence with asymmetric initial density distribution, Physica D, 406, 132444 (2020)
[726] Wadas, M. J.; Johnsen, E., Interactions of two bubbles along a gaseous interface undergoing the Richtmyer-Meshkov instability in two dimensions, Physica D, 409, 132489 (2020)
[727] Lee, T.-W., Lagrangian transport equations and an iterative solution method for turbulent jet flows, Physica D, 403, 132333 (2020) · Zbl 1490.76114
[728] Groom, M.; Thornber, B., The influence of initial perturbation power spectra on the growth of a turbulent mixing layer induced by Richtmyer-Meshkov instability, Physica D, 407, 132463 (2020) · Zbl 1485.76043
[729] Buttler, W. T.; Schulze, R. K.; Charonko, J. J.; Cooley, J. C.; Hammerberg, J. E.; Schwarzkopf, J. D.; Sheppard, D. G.; Goett III, J. J.; Grover, M.; La Lone, B. M.; Lamoreaux, S. K.; Manzanares, R.; Martinez, J. I.; Regele, J. D.; Schauer, M. M.; Schmidt, D. W.; Stevens, G. D.; Turley, W. D.; Valencia, R. J., Understanding the transport and break up of reactive ejecta, Physica D, 415, 132787 (2021)
[730] Probyn, M. G.; Williams, R. J.R.; Thornber, B.; Drikakis, D.; Youngs, D. L., 2d single-mode Richtmyer-Meshkov instability, Physica D, 418, 132827 (2021)
[731] Livescu, D.; Wei, T.; Brady, P. T., Rayleigh-Taylor Instability with gravity reversal, Physica D, 417, 132832 (2021) · Zbl 1485.76045
[732] Dalziel, S.; Mouet, V., Rayleigh-Taylor Instability between unequally stratified layers, Physica D (2021) · Zbl 1485.76042
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.