×

On the number of linearly independent admissible solutions to linear differential and linear difference equations. (English) Zbl 1491.34096

Authors’ abstract: A classical theorem of Frei states that if \(A_p\) is the last transcendental function in the sequence \(A_0,\dots,A_{n-1}\) of entire functions, then each solution base of the differential equation \[f^{(n)}+A_{n-1}f^{(n-1)}+\cdots +A_1f'+A_0f=0\] contains at least \(n-p\) entire functions of infinite order. Here, the transcendental coefficient \(A_p\) dominates the growth of the polynomial coefficients \(A_{p+1},\dots,A_{n-1}\). By expressing the dominance of \(A_p\) in different ways and allowing the coefficients \(A_{p+1},\dots,A_{n-1}\) to be transcendental, we show that the conclusion of Frei’s theorem still holds along with an additional estimation on the asymptotic lower bound for the growth of solutions. At times, these new refined results give a larger number of linearly independent solutions of infinite order than the original theorem of Frei. For such solutions, we show that \(0\) is the only possible finite deficient value. Previously, this property has been known to hold for so-called admissible solutions and is commonly cited as Wittich’s theorem. Analogous results are discussed for linear differential equations in the unit disc, as well as for complex difference and complex \(q\)-difference equations.

MSC:

34M03 Linear ordinary differential equations and systems in the complex domain
34M10 Oscillation, growth of solutions to ordinary differential equations in the complex domain
30D35 Value distribution of meromorphic functions of one complex variable, Nevanlinna theory
39A12 Discrete version of topics in analysis
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barnett, D. C., Halburd, R. G., Morgan, W., and Korhonen, R. J., Nevanlinna theory for the \(q\) -difference operator and meromorphic solutions of \(q\) -difference equations. Proc. Roy. Soc. Edinburgh Sect. A137(2007), no. 3, 457-474. · Zbl 1137.30009
[2] Bergweiler, W., Ishizaki, K., and Yanagihara, N., Meromorphic solutions of some functional equations. Methods Appl. Anal.5(1998), no. 3, 248-258. · Zbl 0924.39017
[3] Boas, R. P. Jr., Entire functions. Academic Press Inc., New York, 1954. · Zbl 0058.30201
[4] Chiang, Y. M. and Feng, S. J., On the Nevanlinna characteristic of \(f\left(z+\eta \right)\) and difference equations in the complex plane. Ramanujan J.16(2008), 105-129. · Zbl 1152.30024
[5] Chyzhykov, I., Gundersen, G. G., and Heittokangas, J., Linear differential equations and logarithmic derivative estimates. Proc. Lond. Math. Soc.86(2003), no. 3, 735-754. · Zbl 1044.34049
[6] Chyzhykov, I., Gröhn, J., Heittokangas, J., and Rättyä, J., Description of growth and oscillation of solutions of complex LDE’s. Preprint, 2019. https://arxiv.org/pdf/1905.07934v2.pdf
[7] Chyzhykov, I., Heittokangas, J., and Rättyä, J., Finiteness of \(\varphi \) -order of solutions of linear differential equations in the unit disc. J. Anal. Math.109(2009), 163-198. · Zbl 1194.34162
[8] Clunie, J., On integral functions having prescribed asymptotic growth. Canad. J. Math.17(1965), 396-404. · Zbl 0134.29103
[9] Frei, M., Über die Lösungen linearer Differentialgleichungen mit ganzen Funktionen als Koeffizienten. Comment. Math. Helv.35(1961), 201-222 (in German). · Zbl 0115.06903
[10] Gundersen, G. G., Estimates for the logarithmic derivative of a meromorphic function, plus similar estimates. J. Lond. Math. Soc. (2)37(1988), no. 1, 88-104. · Zbl 0638.30030
[11] Gundersen, G. G., Heittokangas, J., and Wen, Z. T., Deficient values of solutions of linear differential equations . Comput. Methods Funct. Theory (2020). https://doi.org/10.1007/s40315-020-00320-1 · Zbl 1468.34124
[12] Gundersen, G. G., Steinbart, E., and Wang, S., The possible orders of solutions of linear differential equations with polynomial coefficients. Trans. Amer. Math. Soc.350(1998), no. 3, 1225-1247. · Zbl 0893.34003
[13] Halburd, R., Korhonen, R., and Tohge, K., Holomorphic curves with shift-invariant hyperplane preimages. Trans. Amer. Math. Soc.366(2014), no. 8, 4267-4298. · Zbl 1298.32012
[14] Hayman, W. K., Meromorphic functions. Oxford Mathematical Monographs, Clarendon Press, Oxford, 1964. · Zbl 0115.06203
[15] Hayman, W. K., On the characteristic of functions meromorphic in the plane and of their integrals. Proc. Lond. Math. Soc. (3)14a(1965), 93-128. · Zbl 0141.07901
[16] He, Y. Z. and Xiao, X. Z., Algebroid functions and ordinary differential equations. Science Press, Beijing, 1988 (in Chinese).
[17] Heittokangas, J., On complex differential equations in the unit disc. Dissertation, University of Joensuu, Joensuu, 2000. Ann. Acad. Sci. Fenn. Math. Diss.122(2000), 54. · Zbl 0965.34075
[18] Heittokangas, J., A survey on Blaschke-oscillatory differential equations, with updates. In: Blaschke products and their applications, Fields Institute Commununications,65, Springer, New York, 2013, pp. 43-98. · Zbl 1277.34122
[19] Heittokangas, J., Korhonen, R., Laine, I., Rieppo, J., and Tohge, K., Complex difference equations of Malmquist type. Comput. Methods Funct. Theory1(2001), no. 1, 27-39. · Zbl 1013.39001
[20] Heittokangas, J., Korhonen, R., and Rättyä, J., Linear differential equations with coefficients in weighted Bergman and Hardy spaces. Trans. Amer. Math. Soc.360(2008), 1035-1055. · Zbl 1133.34045
[21] Heittokangas, J., Korhonen, R., and Rättyä, J., Fast growing solutions of linear differential equations in the unit disc. Results Math.49(2006), no. 3-4, 265-278. · Zbl 1120.34071
[22] Heittokangas, J., Korhonen, R., and Rättyä, J., Growth estimates for solutions of linear complex differential equations. Ann. Acad. Sci. Fenn. Math.29(2004), no. 1, 233-246. · Zbl 1057.34111
[23] Heittokangas, J., Latreuch, Z., Wang, J., and Zemirni, M. A., A note on the growth of real functions in sets of positive density. https://arxiv.org/pdf/2006.02066.pdf. · Zbl 1481.30019
[24] Heittokangas, J. and Wen, Z. T., Functions of finite logarithmic order in the unit disc, Part I. J. Math. Anal. Appl.415(2014), no. 1, 435-461. · Zbl 1308.30035
[25] Korenblum, B., An extension of the Nevanlinna theory. Acta Math.135(1975), no. 3-4, 187-219. · Zbl 0323.30030
[26] Korhonen, R. and Ronkainen, O., Order reduction method for linear difference equations. Proc. Amer. Math. Soc.139(2011), no. 9, 3219-3229. · Zbl 1232.39003
[27] Laine, I., Nevanlinna theory and complex differential equations. De Gruyter Studies in Mathematics, 15, Walter de Gruyter & Co., Berlin, 1993. · Zbl 0784.30002
[28] Linden, C. N., Functions analytic in a disc having prescribed asymptotic growth properties. J. Lond. Math. Soc. (2)2(1970), 267-272. · Zbl 0191.37102
[29] Mitrinovic, D. S. and Vasic, M. P., Analytic inequalities. Springer-Verlag, Berlin, 1970. · Zbl 0199.38101
[30] Nevanlinna, R., Analytic functions. Springer-Verlag, New York-Berlin, 1970. · Zbl 0199.12501
[31] Pachpatte, B. G., Mathematical inequalities. Vol. 67, Elsevier, Amsterdam, 2005. · Zbl 1091.26008
[32] Tyler, T. F., Maximum curves and isolated points of entire functions. Proc. Amer. Math. Soc.128(2000), no. 9, 2561-2568. · Zbl 0945.30026
[33] Wen, Z. T., Finite logarithmic order solutions of linear \(q\) -difference equations. Bull. Korean Math. Soc.51(2014), no. 1, 83-98. · Zbl 1282.39010
[34] Wittich, H., Neuere untersuchungen über eindeutige analytische funktionen. 2nd ed., Springer-Verlag, Berlin-Heidelberg-New York, 1968. · Zbl 0159.10103
[35] Yang, C. C. and Yi, H. X., Uniqueness theory of meromorphic functions. Mathematics and its Applications, 557, Kluwer Academic Publishers Group, Dordrecht, 2003. · Zbl 1070.30011
[36] Zhang, G. H., Theory of entire and meromorphic functions. Deficient and asymptotic values and singular directions. Translated from the Chinese by Yang, C.-C., Translations of Mathematical Monographs, 122, American Mathematical Society, Providence, RI, 1993. · Zbl 0790.30019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.