×

A natural scotogenic model for neutrino mass & dark matter. (English) Zbl 1509.83018

Summary: In this letter, we propose an extension of the scotogenic model where singlet Majorana particle can be dark matter (DM) without the need of a highly suppressed scalar coupling of the order \(O(10^{-10})\). For that, the SM is extended with three singlet Majorana fermions, an inert scalar doublet, and two (a complex and a real) singlet scalars, with a global \(Z_4\) symmetry that is spontaneously broken into \(Z_2\) at a scale higher than the electroweak one by the vev of the complex singlet scalar. In this setup, the smallness of neutrino mass is achieved via the cancellation between three diagrams a la scotogenic, a DM candidate that is viable for a large mass range; and the phenomenology is richer than the minimal scotogenic model.

MSC:

83C56 Dark matter and dark energy
81R25 Spinor and twistor methods applied to problems in quantum theory
81V74 Fermionic systems in quantum theory
81R40 Symmetry breaking in quantum theory
81V15 Weak interaction in quantum theory
83-10 Mathematical modeling or simulation for problems pertaining to relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Zee, A., A theory of lepton number violation, neutrino Majorana mass, and oscillation, Phys. Lett. B, 93, 389 (1980)
[2] Zee, A., Quantum numbers of Majorana neutrino masses, Nucl. Phys. B, 264, 99 (1986)
[3] Babu, K. S., Model of ‘calculable’ Majorana neutrino masses, Phys. Lett. B, 203, 132 (1988)
[4] Ma, E., Pathways to naturally small neutrino masses, Phys. Rev. Lett., 81, 1171 (1998)
[5] Ma, E., Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D, 73, Article 077301 pp. (2006)
[6] Krauss, L. M.; Nasri, S.; Trodden, M., A model for neutrino masses and dark matter, Phys. Rev. D, 67, Article 085002 pp. (2003)
[7] Aoki, M.; Kanemura, S.; Seto, O., Neutrino mass, dark matter and baryon asymmetry via TeV-scale physics without fine-tuning, Phys. Rev. Lett., 102, Article 051805 pp. (2009)
[8] Gustafsson, M.; No, J. M.; Rivera, M. A., Predictive model for radiatively induced neutrino masses and mixings with dark matter, Phys. Rev. Lett., 110, Article 211802 pp. (2013)
[9] Nomura, T.; Okada, H., A four-loop radiative seesaw model, Phys. Lett. B, 770, 307 (2017)
[10] Nomura, T.; Okada, H.; Okada, N., A colored KNT neutrino model, Phys. Lett. B, 762, 409 (2016)
[11] Cai, Y.; Herrero-García, J.; Schmidt, M. A.; Vicente, A.; Volkas, R. R., From the trees to the forest: a review of radiative neutrino mass models, Front. Phys., 5, 63 (2017)
[12] Boucenna, S. M.; Morisi, S.; Valle, J. W.F., The low-scale approach to neutrino masses, Adv. High Energy Phys., 2014, Article 831598 pp. (2014)
[13] Ahriche, A.; Jueid, A.; Nasri, S., Radiative neutrino mass and Majorana dark matter within an inert Higgs doublet model, Phys. Rev. D, 97, Article 095012 pp. (2018)
[14] Kitabayashi, T., Scotogenic dark matter and single-zero textures of the neutrino mass matrix, Phys. Rev. D, 98, Article 083011 pp. (2018)
[15] Borah, D.; Dev, P. B.; Kumar, A., TeV scale leptogenesis, inflaton dark matter and neutrino mass in a scotogenic model, Phys. Rev. D, 99, Article 055012 pp. (2019)
[16] Ahriche, A.; Arhrib, A.; Jueid, A.; Nasri, S.; de La Puente, A., Mono-Higgs signature in the scotogenic model with Majorana dark matter, Phys. Rev. D, 101, Article 035038 pp. (2020)
[17] Mahanta, D.; Borah, D., Fermion dark matter with \(N_2\) leptogenesis in minimal scotogenic model, J. Cosmol. Astropart. Phys., 11, Article 021 pp. (2019) · Zbl 07502076
[18] Hugle, T.; Platscher, M.; Schmitz, K., Low-scale leptogenesis in the scotogenic neutrino mass model, Phys. Rev. D, 98, Article 023020 pp. (2018)
[19] Abada, A.; Toma, T., Electric dipole moments in the minimal scotogenic model, J. High Energy Phys., 04, Article 030 pp. (2018)
[20] Baumholzer, S.; Brdar, V.; Schwaller, P.; Segner, A., Shining light on the scotogenic model: interplay of colliders, cosmology and astrophysics
[21] Mahanta, D.; Borah, D., TeV scale leptogenesis with dark matter in non-standard cosmology, J. Cosmol. Astropart. Phys., 04, Article 032 pp. (2020)
[22] Das, P.; Das, M. K.; Khan, N., Dark matter, neutrino mass and baryogenesis in the radiative seesaw model
[23] Borah, D.; Dasgupta, A.; Fujikura, K.; Kang, S. K.; Mahanta, D., Observable gravitational waves in minimal scotogenic model · Zbl 1492.83029
[24] Bouchand, R.; Merle, A., Running of radiative neutrino masses: the scotogenic model, J. High Energy Phys., 07, Article 084 pp. (2012)
[25] Lopez Honorez, L.; Nezri, E.; Oliver, J. F.; Tytgat, M. H., The inert doublet model: an archetype for dark matter, J. Cosmol. Astropart. Phys., 02, Article 028 pp. (2007)
[26] Sarma, L.; Das, P.; Das, M. K., Scalar dark matter, leptogenesis and \(0 \nu \beta \beta\) in minimal scotogenic model
[27] Jueid, A.; Nasri, S., Searching for GeV-scale Majorana dark matter: inter spem et metum
[28] Beniwal, A.; Herrero-García, J.; Leerdam, N.; White, M.; Williams, A. G., The ScotoSinglet model: a scalar singlet extension of the scotogenic model
[29] Casas, J. A.; Ibarra, A., Oscillating neutrinos and muon —> e, gamma, Nucl. Phys. B, 618, 171 (2001) · Zbl 0973.81542
[30] Toma, T.; Vicente, A., Lepton flavor violation in the scotogenic model, J. High Energy Phys., 01, Article 160 pp. (2014)
[31] Chekkal, M.; Ahriche, A.; Hammou, A. B.; Nasri, S., Right-handed neutrinos: dark matter, lepton flavor violation and leptonic collider searches, Phys. Rev. D, 95, Article 095025 pp. (2017)
[32] New constraint on the existence of the \(\mu^+ \to e^+ \gamma\) decay, Phys. Rev. Lett., 110, Article 201801 pp. (2013)
[33] Searches for lepton flavor violation in the decays tau+- —> e+- gamma and tau+- —> mu+- gamma, Phys. Rev. Lett., 104, Article 021802 pp. (2010)
[34] Searches for supersymmetric particles in e+ e- collisions up to 208-GeV and interpretation of the results within the MSSM, Eur. Phys. J. C, 31, 421 (2003)
[35] Lundstrom, E.; Gustafsson, M.; Edsjo, J., The inert doublet model and LEP II limits, Phys. Rev. D, 79, Article 035013 pp. (2009)
[36] Grimus, W.; Lavoura, L.; Ogreid, O. M.; Osland, P., The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B, 801, 81 (2008) · Zbl 1189.81254
[37] Arhrib, A.; Benbrik, R.; El Falaki, J.; Jueid, A., Radiative corrections to the triple Higgs coupling in the inert Higgs doublet model, J. High Energy Phys., 12, Article 007 pp. (2015)
[38] Aad, G., Combined measurements of Higgs boson production and decay using up to 80 fb^−1 of proton-proton collision data at \(\sqrt{ s} = 13\) TeV collected with the ATLAS experiment, Phys. Rev. D, 101, 1, Article 012002 pp. (2020)
[39] Srednicki, M.; Watkins, R.; Olive, K. A., Calculations of relic densities in the early universe, Nucl. Phys. B, 310, 693 (1988)
[40] Edsjo, J.; Gondolo, P., Neutralino relic density including coannihilations, Phys. Rev. D, 56, 1879 (1997)
[41] Alwall, J.; Frederix, R.; Frixione, S.; Hirschi, V.; Maltoni, F.; Mattelaer, O., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys., 07, Article 079 pp. (2014) · Zbl 1402.81011
[42] Degrande, C.; Duhr, C.; Fuks, B.; Grellscheid, D.; Mattelaer, O.; Reiter, T., UFO - the universal FeynRules output, Comput. Phys. Commun., 183, 1201 (2012)
[43] Parton distributions for the LHC run II, J. High Energy Phys., 04, Article 040 pp. (2015)
[44] A. Ahriche, A. Jueid, S. Nasri, In progress.
[45] I. Lalili, The Annihilation Cross Section in Majorana Dark Matter Models: Exact Estimation, Master thesis 2019, Jijel, Algeria.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.