×

On classes of well-posedness for quasilinear diffusion equations in the whole space. (English) Zbl 1459.35183

Summary: Well-posedness classes for degenerate elliptic problems in \(\mathbb{R}^N\) under the form \(u=\Delta\varphi(x,u)+f(x)\), with locally (in \(u)\) uniformly continuous nonlinearities, are explored. While we are particularly interested in the \(L^\infty\) setting, we also investigate about solutions in \(L^1_{loc}\) and in weighted \(L^1\) spaces. We give some sufficient conditions in order that the uniqueness and comparison properties hold for the associated solutions; these conditions are expressed in terms of the moduli of continuity of \(u\mapsto\varphi(x,u)\). Under additional restrictions on the dependency of \(\varphi\) on \(x\), we deduce the existence results for the corresponding classes of solutions and data. Moreover, continuous dependence results follow readily from the existence claim and the comparison property. In particular, we show that for a general continuous non-decreasing nonlinearity \(\varphi:\mathbb{R}\mapsto\mathbb{R}\), the space \(L^\infty\) (endowed with the \(L^1_{loc}\) topology) is a well-posedness class for the problem \(u=\Delta\varphi (u)+f(x)\).

MSC:

35J62 Quasilinear elliptic equations
35J70 Degenerate elliptic equations
35A01 Existence problems for PDEs: global existence, local existence, non-existence
35A02 Uniqueness problems for PDEs: global uniqueness, local uniqueness, non-uniqueness
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] N. Alibaud, J. Endal and E. R. Jakobsen, Optimal and dual stability results for \(L^1\) viscosity and \(L^\infty\) entropy solutions, preprint, 2019, arXiv: 1812.02058.
[2] K. Ammar; P. Wittbold, Existence of renormalized solutions of degenerate elliptic-parabolic problems, Proc. Roy. Soc. Edinburgh Sect. A, 133, 477-496 (2003) · Zbl 1077.35103 · doi:10.1017/S0308210500002493
[3] F. Andreu; N. Igbida; J. M. Mazón; J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary conditions and L1-data, J. Differential Equations, 244, 2764-2803 (2008) · Zbl 1145.35407 · doi:10.1016/j.jde.2008.02.022
[4] B. Andreianov; P. Bénilan; S. N. Kruzhkov, \(L^1\) theory of scalar conservation law with continuous flux function, J. Funct. Anal., 171, 15-33 (2000) · Zbl 0944.35048 · doi:10.1006/jfan.1999.3445
[5] B. Andreianov; M. Brassart, Uniqueness of entropy solutions to fractional conservation laws with “fully infinite” speed of propagation, J. Differential Equations, 268, 3903-3935 (2020) · Zbl 1473.35619 · doi:10.1016/j.jde.2019.10.008
[6] B. Andreianov; N. Igbida, On uniqueness techniques for degenerate convection-diffusion problems, Int. J. Dyn. Syst. Differ. Equ., 4, 3-34 (2012) · Zbl 1263.35007 · doi:10.1504/IJDSDE.2012.045992
[7] B. Andreianov; M. Maliki, A note on uniqueness of entropy solutions to degenerate parabolic equations in \({\mathbb R}^N\), NoDEA Nonlinear Differential Equations Appl., 17, 109-118 (2010) · Zbl 1190.35128 · doi:10.1007/s00030-009-0042-9
[8] B. Andreianov; K. Sbihi; P. Wittbold, On uniqueness and existence of entropy solutions for a nonlinear parabolic problem with absorption, J. Evol. Equ., 8, 449-490 (2008) · Zbl 1158.35057 · doi:10.1007/s00028-008-0365-8
[9] B. Andreianov; P. Wittbold, Convergence of approximate solutions to an elliptic-parabolic equation without the structure condition, NoDEA Nonlinear Differential Equations Appl., 19, 695-717 (2012) · Zbl 1261.35094 · doi:10.1007/s00030-011-0148-8
[10] D. G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems, Vol. 1224, Springer, Berlin, 1986, 1-46. · Zbl 0626.76097
[11] P. Baras; M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble), 34, 185-206 (1984) · Zbl 0519.35002
[12] P. Bénilan, Équations d’évolution dans un espace de Banach quelconque et applications, Thèse d’état, 1972. · Zbl 0246.47068
[13] P. Bénilan; H. Brezis; M. G. Crandall, Asemilinear equation in \(L^1(R^N)\), Ann. Scuola Norm. Sup. Pisa Cl. Sci., 2, 523-555 (1975) · Zbl 0314.35077
[14] P. Bénilan; M. G. Crandall, The continuous dependence on \(\phi\) of solutions of \(u_t-\Delta\phi(u) = 0\), Indiana Univ. Math. J., 30, 161-177 (1981) · Zbl 0482.35012 · doi:10.1512/iumj.1981.30.30014
[15] P. Bénilan, M. G. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces, Preprint book. · Zbl 0635.34013
[16] P. Bénilan; M. G. Crandall; M. Pierre, Solutions of the porous medium equation in \({\mathbb R}^N\) under optimal conditions on initial values, Indiana Univ. Math. J., 33, 51-87 (1984) · Zbl 0552.35045 · doi:10.1512/iumj.1984.33.33003
[17] P. Bénilan; S. N. Kruzhkov, Conservation laws with continuous flux functions, NoDEA Nonlinear Differential Equations Appl., 3, 395-419 (1996) · Zbl 0961.35088 · doi:10.1007/BF01193828
[18] D. Blanchard; A. Porretta, Stefan problems with nonlinear diffusion and convection, J. Differential Equations, 210, 383-428 (2005) · Zbl 1075.35112 · doi:10.1016/j.jde.2004.06.012
[19] N. M. Bokalo, Uniqueness of the solution of the Fourier problem for quasilinear equations of unsteady filtration type, Uspekhi Mat. Nauk, 39, 139-140 (1984) · Zbl 0555.35063
[20] H. Brézis, Semilinear equations in \(R^N\) without condition at infinity, Appl. Math. Optim., 12, 271-282 (1984) · Zbl 0562.35035 · doi:10.1007/BF01449045
[21] H. Brézis; M. G. Crandall, Uniqueness of solutions of the initial-value problem for \(u_t-\Delta \varphi (u) = 0\), J. Math. Pures Appl., 58, 153-163 (1979) · Zbl 0408.35054
[22] J. Carrillo, Entropy solutions for nonlinear degenerate problems, Arch. Ration. Mech. Anal., 147, 269-361 (1999) · Zbl 0935.35056 · doi:10.1007/s002050050152
[23] B. E. J. Dahlberg; C. Kenig, Nonnegative solutions of the porous medium equation, Comm. Partial Differential Equations, 9, 409-437 (1984) · Zbl 0547.35057 · doi:10.1080/03605308408820336
[24] P. Daskalopoulos and C. Kenig, Degenerate diffusions. Initial value problems and local regularity theory, European Mathematical Society (EMS), Zürich, 2007. · Zbl 1205.35002
[25] F. del Teso; J. Endal; E. R. Jakobsen, Uniqueness and properties of distributional solutions of non-local equations of porous medium type, Adv. Math., 305, 78-143 (2017) · Zbl 1349.35311 · doi:10.1016/j.aim.2016.09.021
[26] F. del Teso; J. Endal; E. R. Jakobsen, On distributional solutions of local and non-local problems of porous medium type, C. R. Math. Acad. Sci. Paris, 355, 1154-1160 (2017) · Zbl 1382.35243 · doi:10.1016/j.crma.2017.10.010
[27] E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993. · Zbl 0794.35090
[28] J. Endal; E. R. Jakobsen, \(L^1\) Contraction for bounded (nonintegrable) solutions of degenerate parabolic equations, SIAM J. Math. Anal., 46, 3957-3982 (2014) · Zbl 1323.35096 · doi:10.1137/140966599
[29] T. Gallouët; J.-M. Morel, Resolution of a semilinear equation in \(L^1\), Proc. Roy. Soc. Edinburgh Sect. A, 96, 275-288 (1984) · Zbl 0573.35030 · doi:10.1017/S0308210500025403
[30] T. Gallouët; J.-M. Morel, The equation \(-\Delta u +|u|^{\alpha-1}u = f\), for \(0\leq \alpha\leq 1\), Nonlinear Anal., 11, 893-912 (1987) · Zbl 0659.35036 · doi:10.1016/0362-546X(87)90059-9
[31] M. A. Herrero; M. Pierre, The Cauchy problem for \(u_t = \Delta u^m\) when \(0 <m<1\), Trans. Amer. Math. Soc., 291, 145-158 (1985) · Zbl 0583.35052 · doi:10.1090/S0002-9947-1985-0797051-0
[32] A. S. Kalashnikov, Some problems of the qualitative theory of non-linear degenerate second-order parabolic equations, Uspekhi Mat. Nauk, 42, 135-254 (1987) · Zbl 0642.35047
[33] T. Kato, Schrödinger operators with singular potentials, Israel J. Math., 13, 135-148 (1972) · Zbl 0246.35025 · doi:10.1007/BF02760233
[34] J. B. Keller, On solutions of \(\Delta u = f(u)\)., Comm. Pure Appl. Math., 10, 503-510 (1957) · Zbl 0090.31801 · doi:10.1002/cpa.3160100402
[35] S. N. Kruzhkov; E. Y. Panov, First-order quasilinear conservation laws with infinite initial data dependence area., Dokl. Akad. Nauk URSS, 314, 79-84 (1990)
[36] S. N. Kruzhkov; E. Y. Panov, Osgood’s type conditions for uniqueness of entropy solutions to Cauchy problem for quasilinear conservation laws of the first order, Ann. Univ. Ferrara Sez. VII (N.S.), 40, 31-54 (1994) · Zbl 0863.35060
[37] M. Maliki; H. Touré, Uniqueness of entropy solutions for nonlinear degenerate parabolic problem, J. Evol. Equ., 3, 603-622 (2003) · Zbl 1052.35106 · doi:10.1007/s00028-003-0105-z
[38] R. Osserman, On the inequality \(\Delta u \geq f(u)\), Pacific J. Math., 7, 1641-1647 (1957) · Zbl 0083.09402
[39] F. Otto, \(L^1\) contraction and uniqueness for quasilinear elliptic-parabolic equations, J. Differential Equations, 131, 20-38 (1996) · Zbl 0862.35078 · doi:10.1006/jdeq.1996.0155
[40] A. Ouédraogo, Explicit conditions for the uniqueness of solutions for parabolic degenerate problems, Int. J. Dyn. Syst. Differ. Equ., 6, 75-86 (2016) · Zbl 1442.35234 · doi:10.1504/IJDSDE.2016.074582
[41] M. Pierre, Uniqueness of the solutions of \(u_t-\Delta \varphi(u) = 0\) with initial datum a measure, Nonlinear Anal., 6, 175-187 (1982) · Zbl 0484.35044 · doi:10.1016/0362-546X(82)90086-4
[42] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co., River Edge, New Jersey, 2001. · Zbl 0997.35001
[43] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear Diffusion Equations, World Scientific Publishing Co., River Edge, New Jersey, 2001. · Zbl 0997.35001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.