×

Perturbative gravity from gauge theory. (English) Zbl 1301.83035

Summary: Here, we describe a recently conjectured duality between color and kinematics for gauge-theory amplitudes. Whenever this duality is manifest, the integrands of loop-level gravity scattering amplitudes can be obtained from corresponding gauge-theory amplitudes via a double-copy relation. This duality has been used to enormously simplify a number of explicit multiloop supergravity calculations. The results of these computations is that supergravity theories have a surprisingly tame ultraviolet behavior, and in some cases may even be finite. As an example, we summarize a recent calculation showing that half-maximal \(\mathcal N=4\) supergravity in four spacetime dimensions is ultraviolet finite at three loops, contrary to previous expectations.

MSC:

83E50 Supergravity
83-02 Research exposition (monographs, survey articles) pertaining to relativity and gravitational theory
70S15 Yang-Mills and other gauge theories in mechanics of particles and systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] ’t Hooft G., Ann. Poincare Phys. Theor. A 20 pp 69– (1974)
[2] DOI: 10.1142/S0217751X89000753 · doi:10.1142/S0217751X89000753
[3] DOI: 10.1103/PhysRevD.78.085011 · doi:10.1103/PhysRevD.78.085011
[4] DOI: 10.1103/PhysRevLett.105.061602 · doi:10.1103/PhysRevLett.105.061602
[5] DOI: 10.1103/PhysRevLett.108.201301 · doi:10.1103/PhysRevLett.108.201301
[6] DOI: 10.1016/0550-3213(79)90331-6 · doi:10.1016/0550-3213(79)90331-6
[7] DOI: 10.1016/0370-2693(78)90060-6 · doi:10.1016/0370-2693(78)90060-6
[8] DOI: 10.1103/PhysRevD.76.125020 · doi:10.1103/PhysRevD.76.125020
[9] Smirnov V. A., Feynman Integral Calculus (2006)
[10] DOI: 10.1007/JHEP03(2012)083 · Zbl 1309.81250 · doi:10.1007/JHEP03(2012)083
[11] DOI: 10.1016/j.physletb.2006.11.030 · Zbl 1248.83136 · doi:10.1016/j.physletb.2006.11.030
[12] DOI: 10.1103/PhysRevD.77.025010 · doi:10.1103/PhysRevD.77.025010
[13] DOI: 10.1088/0264-9381/29/11/115006 · Zbl 1246.83230 · doi:10.1088/0264-9381/29/11/115006
[14] DOI: 10.1088/0264-9381/28/21/215005 · Zbl 1230.83091 · doi:10.1088/0264-9381/28/21/215005
[15] DOI: 10.1103/PhysRevD.82.125040 · doi:10.1103/PhysRevD.82.125040
[16] DOI: 10.1103/PhysRevLett.94.181602 · doi:10.1103/PhysRevLett.94.181602
[17] Eden R. J., The Analytic S Matrix (1966) · Zbl 0139.46204
[18] DOI: 10.1016/0550-3213(92)90011-Y · doi:10.1016/0550-3213(92)90011-Y
[19] DOI: 10.1016/S0370-2693(99)00524-9 · doi:10.1016/S0370-2693(99)00524-9
[20] DOI: 10.1088/1751-8113/44/45/454004 · Zbl 1232.81054 · doi:10.1088/1751-8113/44/45/454004
[21] Tye S.-H. H., JHEP 1006 pp 071– (2010)
[22] DOI: 10.1103/PhysRevD.82.065003 · doi:10.1103/PhysRevD.82.065003
[23] DOI: 10.1007/JHEP07(2011)007 · Zbl 1298.81401 · doi:10.1007/JHEP07(2011)007
[24] DOI: 10.1007/JHEP06(2012)061 · Zbl 1397.81135 · doi:10.1007/JHEP06(2012)061
[25] DOI: 10.1103/PhysRevD.85.025006 · doi:10.1103/PhysRevD.85.025006
[26] DOI: 10.1088/1126-6708/2008/10/107 · Zbl 1245.81033 · doi:10.1088/1126-6708/2008/10/107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.