×

Well-posedness of a structural acoustics control model with point observation of the pressure. (English) Zbl 1052.35038

Summary: We consider a controlled and observed partial differential equation (PDE) which describes a structural acoustics interaction. Physically, this PDE describes an acoustic chamber with a flexible chamber wall. The control is applied to this flexible wall, and the class of controls under consideration includes those generated by piezoceramic patches. The observation we consider is point measurements of acoustic pressure inside the cavity. Mathematically, the model consists of a wave equation coupled, through boundary trace terms, to a structurally damped plate (or beam) equation, and the point controls and observations for this system are modeled by highly unbounded operators. We analyze the map from the control to the observation, since the properties of this map are central to any control design which is based upon this observation. We also show there exists an appropriate state space \({\mathcal X}\), so that if the initial state is in \({\mathcal X}\) and the control is in \(L^2\), then the state evolves continuously in \({\mathcal X}\) and the observation is in \(L^2\). The analysis of this system entails a microlocal analysis of the wave component of the system, and the use of pseudodifferential machinery.

MSC:

35B37 PDE in connection with control problems (MSC2000)
76Q05 Hydro- and aero-acoustics
35A27 Microlocal methods and methods of sheaf theory and homological algebra applied to PDEs
47D06 One-parameter semigroups and linear evolution equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Avalos, G., Sharp regularity estimates for solutions to wave equations and their traces with prescribed Neumann data, Appl. Math. Optim., 35, 203-221 (1997) · Zbl 0866.35060
[2] Avalos, G.; Lasiecka, I., Differential Riccati equation for the active control of a problem in structural acoustics, J. Optim. Theory Appl., 91, 695-728 (1996) · Zbl 0869.93023
[3] G. Avalos, I. Lasiecka, and, R. Rebarber, Lack of time robustness for dynamic stabilization of a structural acoustic model, SIAM J. Control Optim, in press.; G. Avalos, I. Lasiecka, and, R. Rebarber, Lack of time robustness for dynamic stabilization of a structural acoustic model, SIAM J. Control Optim, in press. · Zbl 0947.93020
[4] Ball, J. M., Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer. Math. Soc., 63, 370-373 (1977) · Zbl 0353.47017
[5] Banks, H. T.; Smith, R., Active control of acoustic pressure fields using smart material technology in flow control, (Gunzburger, M., IMA (1995), Springer-Verlag) · Zbl 0848.73048
[6] Banks, H. T.; Smith, R. C., Well-posedness of a model for structural acoustic coupling in a cavity enclosed by a thin cylindrical shell, J. Math. Anal. Appl., 191, 1-25 (1995) · Zbl 0824.73048
[7] Banks, H. T.; Demitriou, M. A.; Smith, R. C., An \(H^∞\) minimax periodic control in a 2-D structural acoustics model with piezoceramic actuators, IEEE Trans. Automat. Control, 41, 943-959 (1996) · Zbl 0856.93049
[8] Banks, H. T.; Smith, R. C.; Wang, Y., The modeling of piezoceramic patch interactions with shells, plates and beams, Quart. Appl. Math., 53, 353-381 (1995) · Zbl 0832.73061
[9] Beale, J., Spectral properties of an acoustic boundary condition, Indiana Univ. Math. J., 9, 895-917 (1976) · Zbl 0325.35060
[10] Crawley, E. F.; Anderson, E. H., Detailed models of piezoceramic actuation of beams, Proc. of AIAA Conference (1989)
[11] Crawley, E. F.; de Luis, J., Use of piezoelectric actuators as elements of intelligent structures, AIAA J., 25, 1373-1385 (1987)
[12] E. F. Crawley, J. de Luis, N. W. Hagood, and E. H. Anderson, Development of piezoelectric technology for applications in control of intelligent structures, in Proc. of Applications in Control of Intelligent Structures, American Controls Conference, Atlanta, June 1988, pp. 1890-1896.; E. F. Crawley, J. de Luis, N. W. Hagood, and E. H. Anderson, Development of piezoelectric technology for applications in control of intelligent structures, in Proc. of Applications in Control of Intelligent Structures, American Controls Conference, Atlanta, June 1988, pp. 1890-1896.
[13] Dimitriadis, E. K.; Fuller, C. R.; Rogers, C. A., Piezoelectric actuators for distributed noise and vibration excitation of thin plates, J. Vibration Acoustics, 13, 100-107 (1991)
[14] Doetsch, G., Introduction to the Theory and Application of the Laplace Transform (1994), Springer-Verlag: Springer-Verlag New York
[15] Grisvard, P., Caracterization de quelques espaces d’interpolation, Arch. Rational Mech. Anal., 25, 40-63 (1967) · Zbl 0187.05901
[16] Hormander, L., The Analysis of Linear Partial Differential Operators I-IV (1984), Springer-Verlag: Springer-Verlag New York
[17] Georgiou, T.; Smith, M. C., Graphs, causality and stabilizability: linear, shift-invariant systems on \(L_2\)[0, ∞), Math. Control Signals Systems, 6, 195-223 (1993) · Zbl 0796.93004
[18] Lasiecka, I.; Lions, J. L.; Triggiani, R., Non-homogenous boundary value problems for second order hyperbolic operator, J. Math. Pure Applic., 65, 149-192 (1986) · Zbl 0631.35051
[19] Lasiecka, I.; Triggiani, R., A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations, Proc. Amer. Math. Soc., 104, 745-755 (1988) · Zbl 0699.47034
[20] Lions, J. L.; Magenes, E., Non-homogenous Boundary Value Problems and Applications (1972), Springer-Verlag: Springer-Verlag Berlin/New York · Zbl 0223.35039
[21] Lasiecka, I.; Triggiani, R., Sharp regularity results for mixed second order hyperbolic equations of Neumann type. Part I: the \(L_2\) boundary data, Ann. di Mat. Pura Appl. (Ser. 4), CLVII, 285-367 (1990) · Zbl 0742.35015
[22] Lasiecka, I.; Triggiani, R., Sharp regularity results for mixed second order hyperbolic equations of Neumann type. Part II: general boundary data, J. Differential Equations, 94, 112-164 (1991) · Zbl 0776.35030
[23] Lasiecka, I.; Triggiani, R., Recent advances in regularity of second-order hyperbolic mixed problems, and applications, Dynamics Reported-Expositions in Dynamical System (1994), p. 25-104 · Zbl 0807.35080
[24] H. C. Lester, and, C. R. Fuller, Active control of propeller induced noise fields inside a flexible cylinder, in, Proc. of AIAA Tenth Aeroacoustics Conference, Seattle, WA, 1986.; H. C. Lester, and, C. R. Fuller, Active control of propeller induced noise fields inside a flexible cylinder, in, Proc. of AIAA Tenth Aeroacoustics Conference, Seattle, WA, 1986.
[25] Logemann, H.; Rebarber, R.; Weiss, G., Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop, SIAM J. Control Optim., 34, 572-600 (1996) · Zbl 0853.93081
[26] Logemann, H.; Townley, S., Low-gain control of uncertain regular linear systems, SIAM J. Control Optim., 35, 78-116 (1997) · Zbl 0873.93044
[27] Melrose, R.; Sjostrand, J., Singularities of boundary value problems, Comm. Pure Applied Math., 31, 593-617 (1978) · Zbl 0368.35020
[28] Morse, P. M.; Ingard, K. U., Theoretical Acoustics (1968), McGraw-Hill: McGraw-Hill New York
[29] Miyatake, S., Mixed problems for hyperbolic equations, J. Math. Kyoto Univ, 130, 435-487 (1973) · Zbl 0281.35052
[30] Pritchard, A. J.; Townley, S., A real stability radius for infinite dimensional systems, Proc. of the 1989 MTNS (1990), Birkhäuser: Birkhäuser Boston, p. 635-646 · Zbl 0736.93065
[31] Rebarber, R., Conditions for the equivalence of internal and external stability for distributed parameter systems, IEEE Trans. Automat. Control, 38, 994-998 (1993) · Zbl 0786.93087
[32] Rebarber, R., Exponential stability of coupled beams with dissipative joints: a frequency domain approach, SIAM J. Control Optim., 33, 1-28 (1995) · Zbl 0819.93042
[33] Sakamoto, R., Mixed problems for hyperbolic equations, I, II, J. Math. Kyoto Univ., 10, 343-373 (1970)
[34] Salamon, D., Realization theory in Hilbert spaces, Math. Systems Theory, 21, 147-164 (1989) · Zbl 0668.93018
[35] Tataru, D., On the regularity of boundary traces for the wave equation, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26, 185-206 (1998) · Zbl 0932.35136
[36] Taylor, M., Pseudodifferential Operators (1981), Princeton University Press: Princeton University Press Princeton · Zbl 0453.47026
[37] Triggiani, R., Wave equation on a bounded domain with boundary dissipation: an operator approach, J. Math. Anal. Appl., 137, 438-461 (1989) · Zbl 0686.35067
[38] Triggiani, R., Interior and boundary regularity of the wave equation with interior point control, Differential Integral Equations, 6, 111-129 (1993) · Zbl 0786.35086
[39] Weiss, G., Transfer functions of regular linear systems, part I: characterization of regularity, Trans. Amer. Math. Soc., 342, 827-854 (1994) · Zbl 0798.93036
[40] G. Weiss, and, R. F. Curtain, Dynamic stabilization of regular linear systems, IEEE Trans. Aut. Control, in press.; G. Weiss, and, R. F. Curtain, Dynamic stabilization of regular linear systems, IEEE Trans. Aut. Control, in press. · Zbl 0876.93074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.