×

Weakly complete compex surfaces. (English) Zbl 1402.32035

Summary: A weakly complete space is a complex space that admits a (smooth) plurisubharmonic exhaustion function. In this paper, we classify those weakly complete complex surfaces for which such an exhaustion function can be chosen to be real analytic: they can be modifications of Stein spaces or proper over a non-compact (possibly singular) complex curve, or foliated with real-analytic Levi flat hypersurfaces which in turn are foliated by dense complex leaves (these we call “surfaces of Grauert type”). In the last case, we also show that such Levi flat hypersurfaces are in fact level sets of a global proper pluriharmonic function, up to passing to a holomorphic double cover of the space.
Our method of proof is based on the careful analysis of the level sets of the given exhaustion function and their intersections with the minimal singular set, that is, the set where every plurisubharmonic exhaustion function has a degenerate Levi form.

MSC:

32U10 Plurisubharmonic exhaustion functions
32E10 Stein spaces
32T35 Exhaustion functions
PDFBibTeX XMLCite
Full Text: DOI arXiv Link

References:

[1] S.AXLER, P.BOURDON, and W.RAMEY,Harmonic Function Theory, 2nd ed., Graduate Texts in Mathematics, vol. 137, Springer-Verlag, New York, 2001. http://dx.doi.org/10.1007/978-1-4757-8137-3.MR1805196 · Zbl 0959.31001
[2] D. E.BARRETT,Global convexity properties of some families of three-dimensional com- pact Levi-flat hypersurfaces, Trans. Amer. Math. Soc. 332 (1992), no. 1, 459–474. http://dx.doi.org/10.2307/2154042.MR1055805 · Zbl 0761.32010
[3] M.BRUNELLA,On K¨ahler surfaces with semipositive Ricci curvature, Riv. Math. Univ. Parma (N.S.) 1 (2010), no. 2, 441–450.MR2789451 · Zbl 1226.32011
[4] C.CAMACHOand A.LINSNETO,Geometric Theory of Foliations, Birkh¨auser Boston, Inc., Boston, MA, 1985, Translated from the Portuguese by Sue E. Goodman. http://dx.doi.org/10.1007/978-1-4612-5292-4.MR824240
[5] H.CARTAN,Quotients of complex analytic spaces, Contributions to Function Theory (Internat. Colloq. Function Theory, Bombay (1960)), Tata Institute of Fundamental Research, Bombay, 1960, pp. 1–15.MR0139769 (25 #3199)
[6] J. P.DEMAILLY,Complex, Analytic and Differential Geometry, Univ. Grenoble I, Institut Fourier, Grenoble, 1997.
[7] K.DIEDERICHand T.OHSAWA,A Levi problem on two-dimensional complex manifolds, Math. Ann. 261 (1982), no. 2, 255–261.http://dx.doi.org/10.1007/BF01456222.MR675738 · Zbl 0502.32010
[8] B.GILLIGAN, Ch.MIEBACH, and K.OELJEKLAUS,Pseudoconvex domains spread over complex homogeneous manifolds, Manuscripta Math. 142 (2013), no. 1–2, 35–59. http://dx.doi.org/10.1007/s00229-012-0592-8.MR3080999 · Zbl 1375.32040
[9] F.GUARALDO, P.MACR‘I, and Al.TANCREDI,Topics on Real Analytic Spaces, Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig, 1986. http://dx.doi.org/10.1007/978-3-322-84243-5.MR1013362
[10] F.HARTOGS, ¨Uber die aus den singul¨aren Stellen einer analytischen Funktion mehrerer Ver¨anderlichen bestehenden Gebilde, Acta Math. 32 (1909), no. 1, 57–79 (German). http://dx.doi.org/10.1007/BF02403211.MR1555046 · JFM 40.0472.01
[11] R.HARVEYand J.POLKING,Extending analytic objects, Comm. Pure Appl. Math. 28 (1975), no. 6, 701–727.http://dx.doi.org/10.1002/cpa.3160280603.MR0409890 · Zbl 0323.32013
[12] H.HIRONAKA,Desingularization of complex-analytic varieties, Actes du Congr‘es International des Math´ematiciens, Nice (1970), Gauthier-Villars, Paris, 1971, pp. 627–631 (French).MR0425170
[13] J.MATHER,Notes on topological stability, Bull. Amer. Math. Soc. (N.S.) 49 (2012), no. 4, 475– 506.http://dx.doi.org/10.1090/S0273-0979-2012-01383-6.MR2958928
[14] S.MONGODI, Z.SŁODKOWSKI, and G.TOMASSINI,On weakly complete surfaces, C. R. Math. Acad. Sci. Paris 353 (2015), no. 11, 969–972 (English, with English and French summaries).http://dx.doi.org/10.1016/j.crma.2015.08.009.MR3419844 · Zbl 1337.32019
[15] R.NARASIMHAN,Introduction to the Theory of Analytic Spaces, Lecture Notes in Mathematics, vol. 25, Springer-Verlag, Berlin-New York, 1966.MR0217337 · Zbl 0168.06003
[16] ,The Levi problem in the theory of functions of several complex variables, Proc. Internat. Congr. Mathematicians, Stockholm (1962), Inst. Mittag-Leffler, Djursholm, 1963, pp. 385– 388.MR0176096
[17] T.NISHINO,L’existence d’une fonction analytique sur une vari´et´e analytique complexe ‘a deux dimensions, Publ. Res. Inst. Math. Sci. 18 (1982), no. 1, 387–419 (French). http://dx.doi.org/10.2977/prims/1195184029.MR660835 · Zbl 0497.32023
[18] T.OHSAWA,Weakly 1-complete manifold and Levi problem, Publ. Res. Inst. Math. Sci. 17 (1981), no. 1, 153–164.http://dx.doi.org/10.2977/prims/1195186709.MR613939 · Zbl 0465.32011
[19] M. J.PFLAUM,Analytic and Geometric Study of Stratified Spaces, Lecture Notes in Mathematics, vol. 1768, Springer-Verlag, Berlin, 2001.MR1869601 · Zbl 0988.58003
[20] C.REA,Levi-flat submanifolds and holomorphic extension of foliations, Ann. Scuola Norm. Sup. Pisa (3) 26 (1972), 665–681.MR0425158 Weakly Complete Complex Surfaces935 · Zbl 0272.57013
[21] Z.SŁODKOWSKI,Analytic set-valued functions and spectra, Math. Ann. 256 (1981), no. 3, 363– 386.http://dx.doi.org/10.1007/BF01679703.MR626955 · Zbl 0452.46028
[22] ,Local maximum property andq-plurisubharmonic functions in uniform algebras, J. Math. Anal. Appl. 115 (1986), no. 1, 105–130. http://dx.doi.org/10.1016/0022-247X(86)90027-2.MR835588
[23] Z.SŁLODKOWSKIand G.TOMASSINI,Minimal kernels of weakly complete spaces, J. Funct. Anal. 210 (2004), no. 1, 125–147. http://dx.doi.org/10.1016/S0022-1236(03)00182-4.MR2052116 · Zbl 1055.32009
[24] D.SULLIVAN,Combinatorial invariants of analytic spaces, Proceedings of Liverpool Singularities—Symposium, I (1969/70), Springer, Berlin, 1971, pp. 165–168. http://dx.doi.org/10.1007/BFb0066822.MR0278333
[25] D.TROTMAN,Lectures on real stratification theory, Singularity Theory, World Sci. Publ., Hackensack, NJ, 2007, pp. 139–155. http://dx.doi.org/10.1142/9789812707499_0004.MR2342910 · Zbl 1176.58001
[26] T.UEDA,On the neighborhood of a compact complex curve with topologically trivial normal bundle, J. Math. Kyoto Univ. 22 (1982/83), no. 4, 583–607. http://dx.doi.org/10.1215 · Zbl 0519.32019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.