×

Recent developments in spatial graph theory. (English) Zbl 1386.57003

Flapan, Erica (ed.) et al., Knots, links, spatial graphs, and algebraic invariants. AMS special session on algebraic and combinatorial structures in knot theory and AMS special session on spatial graphs, both held at the California State University, Fullerton, CA, USA, October 24–25, 2015. Proceedings. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-2847-1/pbk; 978-1-4704-4077-0/ebook). Contemporary Mathematics 689, 81-102 (2017).
Summary: This article presents a survey of some recent results in the theory of spatial graphs. In particular, we highlight results related to intrinsic knotting and linking and results about symmetries of spatial graphs. In both cases we consider spatial graphs in \(S^3\) as well as in other \(3\)-manifolds.
For the entire collection see [Zbl 1367.57003].

MSC:

57M15 Relations of low-dimensional topology with graph theory
57M25 Knots and links in the \(3\)-sphere (MSC2010)
05C10 Planar graphs; geometric and topological aspects of graph theory
57-02 Research exposition (monographs, survey articles) pertaining to manifolds and cell complexes
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Barsotti, Jamison; Mattman, Thomas W., Graphs on 21 edges that are not 2-apex, Involve, 9, 4, 591-621 (2016) · Zbl 1341.05037 · doi:10.2140/involve.2016.9.591
[2] Bj{\`“o}rner, Anders; Las Vergnas, Michel; Sturmfels, Bernd; White, Neil; Ziegler, G{\'”u}nter M., Oriented matroids, Encyclopedia of Mathematics and its Applications 46, xii+516 pp. (1993), Cambridge University Press, Cambridge · Zbl 0773.52001
[3] Blain, Paul; Bowlin, Garry; Fleming, Thomas; Foisy, Joel; Hendricks, Jacob; Lacombe, Jason, Some results on intrinsically knotted graphs, J. Knot Theory Ramifications, 16, 6, 749-760 (2007) · Zbl 1162.57003 · doi:10.1142/S021821650700552X
[4] B{\`“o}hme, Thomas, On spatial representations of graphs. Contemporary methods in graph theory, 151-167 (1990), Bibliographisches Inst., Mannheim · Zbl 0718.05054
[5] A. F. Brown, Embeddings of graphs in \(E^3\), Ph.D dissertation, Kent State University, (1977).
[6] Bustamante, Jason; Federman, Jared; Foisy, Joel; Kozai, Kenji; Matthews, Kevin; McNamara, Kristin; Stark, Emily; Trickey, Kirsten, Intrinsically linked graphs in projective space, Algebr. Geom. Topol., 9, 3, 1255-1274 (2009) · Zbl 1182.05039 · doi:10.2140/agt.2009.9.1255
[7] Calvo, Jorge Alberto, Geometric knot spaces and polygonal isotopy, J. Knot Theory Ramifications, 10, 2, 245-267 (2001) · Zbl 1001.57024 · doi:10.1142/S0218216501000834
[8] Campbell, Jesse; Mattman, Thomas W.; Ottman, Ryan; Pyzer, Joel; Rodrigues, Matt; Williams, Sam, Intrinsic knotting and linking of almost complete graphs, Kobe J. Math., 25, 1-2, 39-58 (2008) · Zbl 1197.57005
[9] Chambers, Dwayne; Flapan, Erica, Topological symmetry groups of small complete graphs, Symmetry, 6, 2, 189-209 (2014) · Zbl 1373.57006 · doi:10.3390/sym6020189
[10] Cho, Sangbum; Koda, Yuya, Topological symmetry groups and mapping class groups for spatial graphs, Michigan Math. J., 62, 1, 131-142 (2013) · Zbl 1296.57010 · doi:10.1307/mmj/1363958244
[11] Conway, J. H.; Gordon, C. McA., Knots and links in spatial graphs, J. Graph Theory, 7, 4, 445-453 (1983) · Zbl 0524.05028 · doi:10.1002/jgt.3190070410
[12] Du Val, Patrick, Homographies, quaternions and rotations, Oxford Mathematical Monographs, xiv+116 pp. (1964), Clarendon Press, Oxford · Zbl 0128.15403
[13] L. Finschi, Homepage of oriented matroids. http://www.om.math.ethz.ch/. · Zbl 1005.52013
[14] Flapan, Erica, Rigidity of graph symmetries in the \(3\)-sphere, J. Knot Theory Ramifications, 4, 3, 373-388 (1995) · Zbl 0837.57002 · doi:10.1142/S0218216595000181
[15] Flapan, Erica, Symmetries of M\`“obius ladders, Math. Ann., 283, 2, 271-283 (1989) · Zbl 0642.57008 · doi:10.1007/BF01446435
[16] Flapan, Erica; Fletcher, Will, Intrinsic chirality of multipartite graphs, J. Math. Chem., 51, 7, 1853-1863 (2013) · Zbl 1311.92199 · doi:10.1007/s10910-013-0187-y
[17] Flapan, Erica; Fletcher, Will; Nikkuni, Ryo, Reduced Wu and generalized Simon invariants for spatial graphs, Math. Proc. Cambridge Philos. Soc., 156, 3, 521-544 (2014) · Zbl 1287.05027 · doi:10.1017/S0305004114000073
[18] E. Flapan and H. Howards, Intrinsic chirality of graphs in 3-manifolds, Communications in Analysis and Geometry, to appear. · Zbl 1205.57010
[19] Flapan, Erica; Howards, Hugh; Lawrence, Don; Mellor, Blake, Intrinsic linking and knotting of graphs in arbitrary 3-manifolds, Algebr. Geom. Topol., 6, 1025-1035 (electronic) (2006) · Zbl 1128.57005 · doi:10.2140/agt.2006.6.1025
[20] Flapan, Erica; Kozai, Kenji, Linking number and writhe in random linear embeddings of graphs, J. Math. Chem., 54, 5, 1117-1133 (2016) · Zbl 1346.92082 · doi:10.1007/s10910-016-0610-2
[21] Flapan, Erica; Lawrence, Emille Davie, Topological symmetry groups of M\`“obius ladders, J. Knot Theory Ramifications, 23, 14, 1450077, 13 pp. (2014) · Zbl 1320.57008 · doi:10.1142/S0218216514500771
[22] Flapan, Erica; Lehle, Nicole; Mellor, Blake; Pittluck, Matt; Vongsathorn, Xan, Symmetries of embedded complete bipartite graphs, Fund. Math., 226, 1, 1-16 (2014) · Zbl 1305.57004 · doi:10.4064/fm226-1-1
[23] Flapan, Erica; Mellor, Blake; Naimi, Ramin, Complete graphs whose topological symmetry groups are polyhedral, Algebr. Geom. Topol., 11, 3, 1405-1433 (2011) · Zbl 1270.57012 · doi:10.2140/agt.2011.11.1405
[24] Flapan, Erica; Mellor, Blake; Naimi, Ramin; Yoshizawa, Michael, Classification of topological symmetry groups of \(K_n\), Topology Proc., 43, 209-233 (2014) · Zbl 1282.57022
[25] Flapan, Erica; Naimi, Ramin, The Y-triangle move does not preserve intrinsic knottedness, Osaka J. Math., 45, 1, 107-111 (2008) · Zbl 1145.05019
[26] Flapan, Erica; Naimi, Ramin; Pommersheim, James, Intrinsically triple linked complete graphs, Topology Appl., 115, 2, 239-246 (2001) · Zbl 0988.57003 · doi:10.1016/S0166-8641(00)00064-X
[27] Flapan, Erica; Naimi, Ramin; Pommersheim, James; Tamvakis, Harry, Topological symmetry groups of graphs embedded in the 3-sphere, Comment. Math. Helv., 80, 2, 317-354 (2005) · Zbl 1074.05026 · doi:10.4171/CMH/16
[28] Flapan, Erica; Naimi, Ramin; Tamvakis, Harry, Topological symmetry groups of complete graphs in the 3-sphere, J. London Math. Soc. (2), 73, 1, 237-251 (2006) · Zbl 1091.57001 · doi:10.1112/S0024610705022490
[29] Flapan, Erica; Tamvakis, Harry, Topological symmetry groups of graphs in \(3\)-manifolds, Proc. Amer. Math. Soc., 141, 4, 1423-1436 (2013) · Zbl 1266.57003 · doi:10.1090/S0002-9939-2012-11405-4
[30] Flapan, Erica; Weaver, Nikolai, Intrinsic chirality of complete graphs, Proc. Amer. Math. Soc., 115, 1, 233-236 (1992) · Zbl 0756.05046 · doi:10.2307/2159591
[31] Flapan, Erica; Weaver, Nikolai, Intrinsic chirality of \(3\)-connected graphs, J. Combin. Theory Ser. B, 68, 2, 223-232 (1996) · Zbl 0861.05023 · doi:10.1006/jctb.1996.0066
[32] Fleming, Thomas; Mellor, Blake, Counting links in complete graphs, Osaka J. Math., 46, 1, 173-201 (2009) · Zbl 1163.05008
[33] Foisy, Joel, Intrinsically knotted graphs, J. Graph Theory, 39, 3, 178-187 (2002) · Zbl 1176.05022 · doi:10.1002/jgt.10017
[34] Foisy, Joel, A newly recognized intrinsically knotted graph, J. Graph Theory, 43, 3, 199-209 (2003) · Zbl 1022.05019 · doi:10.1002/jgt.10114
[35] Frucht, R., Herstellung von Graphen mit vorgegebener abstrakter Gruppe, Compositio Math., 6, 239-250 (1939) · JFM 64.0596.02
[36] Goldberg, Noam; Mattman, Thomas W.; Naimi, Ramin, Many, many more intrinsically knotted graphs, Algebr. Geom. Topol., 14, 3, 1801-1823 (2014) · Zbl 1292.05091 · doi:10.2140/agt.2014.14.1801
[37] Hake, Kathleen; Mellor, Blake; Pittluck, Matt, Topological symmetry groups of complete bipartite graphs, Tokyo J. Math., 39, 1, 133-156 (2016) · Zbl 1357.57012 · doi:10.3836/tjm/1459367261
[38] Hanaki, Ryo; Nikkuni, Ryo; Taniyama, Kouki; Yamazaki, Akiko, On intrinsically knotted or completely 3-linked graphs, Pacific J. Math., 252, 2, 407-425 (2011) · Zbl 1232.57003 · doi:10.2140/pjm.2011.252.407
[39] Hashimoto, Hiroka; Nikkuni, Ryo, Conway-Gordon type theorem for the complete four-partite graph \(K_{3,3,1,1} \), New York J. Math., 20, 471-495 (2014) · Zbl 1296.57009
[40] Hashimoto, Hiroka; Nikkuni, Ryo, On Conway-Gordon type theorems for graphs in the Petersen family, J. Knot Theory Ramifications, 22, 9, 1350048, 15 pp. (2013) · Zbl 1288.57006 · doi:10.1142/S021821651350048X
[41] C. Hughes, Linked triangle pairs in a straight edge embedding of \(K_6\), Pi Mu Epsilon Journal, vol. 12, (2006), No. 4, 213-218.
[42] Huh, Youngsik, Knotted Hamiltonian cycles in linear embedding of \(K_7\) into \(\mathbb{R}^3\), J. Knot Theory Ramifications, 21, 14, 1250132, 14 pp. (2012) · Zbl 1267.57007 · doi:10.1142/S0218216512501325
[43] Huh, Youngsik; Jeon, Choon Bae, Knots and links in linear embeddings of \(K_6\), J. Korean Math. Soc., 44, 3, 661-671 (2007) · Zbl 1136.57001 · doi:10.4134/JKMS.2007.44.3.661
[44] Ikeda, Toru, Symmetries of spatial graphs and rational twists along spheres and tori, Symmetry, 4, 1, 26-38 (2012) · Zbl 1351.57010 · doi:10.3390/sym4010026
[45] Ikeda, Toru, Rigidly achiral hyperbolic spatial graphs in 3-manifolds, J. Knot Theory Ramifications, 22, 8, 1350039, 12 pp. (2013) · Zbl 1278.57009 · doi:10.1142/S0218216513500399
[46] Ikeda, Toru, Every finite group action on a compact 3-manifold preserves infinitely many hyperbolic spatial graphs, J. Knot Theory Ramifications, 23, 6, 1450034, 11 pp. (2014) · Zbl 1302.57006 · doi:10.1142/S0218216514500345
[47] Ikeda, Toru, Cyclically symmetric hyperbolic spatial graphs in 3-manifolds, Geom. Dedicata, 170, 177-183 (2014) · Zbl 1293.57005 · doi:10.1007/s10711-013-9875-9
[48] C. B. Jeon, G. T. Jin, H. J. Lee, S. J. Park, H. J. Huh, J. W. Jung, W. S. Nam, M. S. Sim., Number of knots and links in linear \(K_7\), slides from the International Workshop on Spatial Graphs, (2010),
 http://www.f.waseda.jp/taniyama/SG2010/talks/19-7Jeon.pdf 
[49] Johnson, Brenda; Kidwell, Mark E.; Michael, T. S., Intrinsically knotted graphs have at least 21 edges, J. Knot Theory Ramifications, 19, 11, 1423-1429 (2010) · Zbl 1232.57004 · doi:10.1142/S0218216510008455
[50] H. Kim, H.J. Lee, M. Lee, T.W. Mattman, and S. Oh, Triangle-free intrinsically knotted graphs with 22 edges, arXiv:1407.3460v1 (2014). · Zbl 1369.05150
[51] Koda, Yuya, Automorphisms of the 3-sphere that preserve spatial graphs and handlebody-knots, Math. Proc. Cambridge Philos. Soc., 159, 1, 1-22 (2015) · Zbl 1371.57008 · doi:10.1017/S0305004114000723
[52] Kohara, Takashi; Suzuki, Shin’ichi, Some remarks on knots and links in spatial graphs. Knots 90, Osaka, 1990, 435-445 (1992), de Gruyter, Berlin · Zbl 0771.57002
[53] Lee, Minjung; Kim, Hyoungjun; Lee, Hwa Jeong; Oh, Seungsang, Exactly fourteen intrinsically knotted graphs have 21 edges, Algebr. Geom. Topol., 15, 6, 3305-3322 (2015) · Zbl 1333.57015 · doi:10.2140/agt.2015.15.3305
[54] Ludwig, Lewis D.; Arbisi, Pamela, Linking in straight-edge embeddings of \(K_7\), J. Knot Theory Ramifications, 19, 11, 1431-1447 (2010) · Zbl 1236.57009 · doi:10.1142/S0218216510008467
[55] Mattman, Thomas W., Graphs of 20 edges are 2-apex, hence unknotted, Algebr. Geom. Topol., 11, 2, 691-718 (2011) · Zbl 1216.05017 · doi:10.2140/agt.2011.11.691
[56] T.W. Mattman, C. Morris, and J. Ryker, Order nine MMIK graphs (Included in this volume). · Zbl 1390.05049
[57] T.W. Mattman and M. Pierce, The \(K_{n+5}\) and \(K_{3^2,1^n}\) families and obstructions to \(n\)-apex, (Included in this volume). · Zbl 1390.05050
[58] Mellor, Blake, Complete bipartite graphs whose topological symmetry groups are polyhedral, Tokyo J. Math., 37, 1, 135-158 (2014) · Zbl 1301.57008 · doi:10.3836/tjm/1406552435
[59] Morgan, John W.; Fong, Frederick Tsz-Ho, Ricci flow and geometrization of 3-manifolds, University Lecture Series 53, x+150 pp. (2010), American Mathematical Society, Providence, RI · Zbl 1196.53003 · doi:10.1090/ulect/053
[60] R. Motwani, A. Raghunathan and H. Saran, Constructive results from graph minors: Linkless embeddings, 29th Annual Symposium on Foundations of Computer Science, IEEE, (1988), 398-409.
[61] Naimi, Ramin; Pavelescu, Elena, Linear embeddings of \(K_9\) are triple linked, J. Knot Theory Ramifications, 23, 3, 1420001, 9 pp. (2014) · Zbl 1294.05063 · doi:10.1142/S0218216514200016
[62] Naimi, Ramin; Pavelescu, Elena, On the number of links in a linearly embedded \(K_{3,3,1} \), J. Knot Theory Ramifications, 24, 8, 1550041, 21 pp. (2015) · Zbl 1321.05162 · doi:10.1142/S0218216515500418
[63] R. Naimi, E. Pavelescu, Sample manual verification, arXiv:1202.1613v4
[64] Negami, Seiya, Ramsey theorems for knots, links and spatial graphs, Trans. Amer. Math. Soc., 324, 2, 527-541 (1991) · Zbl 0721.57004 · doi:10.2307/2001731
[65] Nikkuni, Ryo, A refinement of the Conway-Gordon theorems, Topology Appl., 156, 17, 2782-2794 (2009) · Zbl 1185.57003 · doi:10.1016/j.topol.2009.08.013
[66] Nikkuni, Ryo; Taniyama, Kouki, Symmetries of spatial graphs and Simon invariants, Fund. Math., 205, 3, 219-236 (2009) · Zbl 1185.57007 · doi:10.4064/fm205-3-2
[67] Nikkuni, Ryo; Taniyama, Kouki, \( \Delta Y\)-exchanges and the Conway-Gordon theorems, J. Knot Theory Ramifications, 21, 7, 1250067, 14 pp. (2012) · Zbl 1239.57007 · doi:10.1142/S0218216512500678
[68] Ozawa, Makoto; Tsutsumi, Yukihiro, Primitive spatial graphs and graph minors, Rev. Mat. Complut., 20, 2, 391-406 (2007) · Zbl 1142.57004 · doi:10.5209/rev\_REMA.2007.v20.n2.16496
[69] O’Donnol, Danielle, Knotting and linking in the Petersen family, Osaka J. Math., 52, 4, 1079-1100 (2015) · Zbl 1344.57004
[70] M. Pierce, Searching for and classifying the finite set of minor-minimal non-apex graphs, CSU, Chico Honor’s Thesis., (2014). Available at
http://www.csuchico.edu/ tmattman”.
[71] Ram{\'{\i }}rez Alfons{\'{\i }}n, J. L., Spatial graphs and oriented matroids: the trefoil, Discrete Comput. Geom., 22, 1, 149-158 (1999) · Zbl 0931.05061 · doi:10.1007/PL00009446
[72] Robertson, Neil; Seymour, P. D., Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser. B, 92, 2, 325-357 (2004) · Zbl 1061.05088 · doi:10.1016/j.jctb.2004.08.001
[73] Robertson, Neil; Seymour, Paul; Thomas, Robin, Sachs’ linkless embedding conjecture, J. Combin. Theory Ser. B, 64, 2, 185-227 (1995) · Zbl 0832.05032 · doi:10.1006/jctb.1995.1032
[74] Sachs, Horst, On a spatial analogue of Kuratowski’s theorem on planar graphs-an open problem. Graph theory, \L ag\'ow, 1981, Lecture Notes in Math. 1018, 230-241 (1983), Springer, Berlin · Zbl 0525.05024 · doi:10.1007/BFb0071633
[75] Sachs, H., On spatial representations of finite graphs. Finite and infinite sets, Vol.I, II, Eger, 1981, Colloq. Math. Soc. J\'anos Bolyai 37, 649-662 (1984), North-Holland, Amsterdam · Zbl 0568.05026
[76] Simon, Jonathan, Topological chirality of certain molecules, Topology, 25, 2, 229-235 (1986) · Zbl 0615.57005 · doi:10.1016/0040-9383(86)90041-8
[77] H. Schwartz, Private Communication.
[78] Taniyama, Kouki; Yasuhara, Akira, Realization of knots and links in a spatial graph, Topology Appl., 112, 1, 87-109 (2001) · Zbl 0968.57001 · doi:10.1016/S0166-8641(99)00228-X
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.