×

On the meshfree particle methods for fluid-structure interaction problems. (English) Zbl 1464.76150

Summary: This paper presents a review of recent progress made towards the applications of the meshfree particle methods (MPMs) for solving coupled fluid-structure interaction (FSI) problems. Meshfree methods are categorized based on their mathematical formulation and treatment of computational data points. The advantages and limitations of these methods, particularly related to FSI applications, have been identified. A detailed account of salient work related to the FSI problems involving complex geometries, viscous flows, and large structural deformations has been presented and the benchmark solutions are identified for future research. Compared to their mesh-based counterparts, MPMs are found better suited in negotiating moving boundaries and complex geometries, features that are the hallmark of FSI problems. However, the biggest challenge to their wider acceptability is their implementation and programming complexity, higher computational cost, and lack of commercial software packages. So far, meshfree methods have mostly been limited to applications, where conventional methods show limited performance. Owing to its promising growth potential, partitioned FSI is the prime emphasis of this paper. Various aspects of partitioned FSI have been identified and classified for meshfree FSI problems, which include problem formulation strategies, domains discretization approaches, solver coupling methodology, interface treatment, benchmark problems, computational load, and availability of commercial software. Furthermore, various challenges involved in employing MPMs for FSI have also been identified and discussed along with the state-of-the-art techniques used in meshfree methods and FSI applications, and a future way forward has been proposed. In essence, this paper is an effort to identify and classify key aspects of MPM applications for FSI and suggest potential avenues to explore the full potential of MPM capabilities for the solution of coupled problems.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
76D05 Navier-Stokes equations for incompressible viscous fluids
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Garg, S.; Pant, M., Meshfree methods: a comprehensive review of applications, Int J Comput Methods, 15, Article 1830001 pp. (2018) · Zbl 1404.74199
[2] Liu GR, Liu MB. Smoothed particle hydrodynamics : a meshfree particle method. 2003. · Zbl 1046.76001
[3] Hinatsu, M.; Ferziger, JH., Numerical computation of unsteady incompressible flow in complex geometry using a composite multigrid technique, Int J Numer Methods Fluids (1991) · Zbl 0741.76044
[4] Perng, CY; Street, RL., A coupled multigrid-domain-splitting technique for simulating incompressible flows in geometrically complex domains, Int J Numer Methods Fluids (1991) · Zbl 0739.76053
[5] Meinke, M.; Schneiders, L.; Günther, C.; Schröder, W., A cut-cell method for sharp moving boundaries in Cartesian grids, Comput Fluids (2013) · Zbl 1290.76087
[6] Schneiders, L.; Meinke, M.; Schröder, W., A robust cut-cell method for fluid-structure interaction on adaptive meshes, (Proceedings of the 21st AIAA computational fluid dynamics conference (2013))
[7] Örley, F.; Pasquariello, V.; Hickel, S.; Adams, NA, Cut-element based immersed boundary method for moving geometries in compressible liquid flows with cavitation, J Comput Phys (2015) · Zbl 1351.76121
[8] Peskin, CS., The immersed boundary method, Acta Numer, 11, 479-517 (2002) · Zbl 1123.74309
[9] Wang, X.; Shu, C.; Wu, J.; Yang, LM, An efficient boundary condition-implemented immersed boundary-lattice Boltzmann method for simulation of 3D incompressible viscous flows, Comput Fluids (2014) · Zbl 1391.76642
[10] Liu, MB; Liu, GR., Particle methods for multi-scale and multi-physics, 6 (2017), World Scientific
[11] Budd, CJ; McRae, ATT; Cotter, CJ, The scaling and skewness of optimally transported meshes on the sphere, J Comput Phys, 375, 540-564 (2018) · Zbl 1416.65323
[12] Zhuang, X.; Cai, Y.; Augarde, C., A meshless sub-region radial point interpolation method for accurate calculation of crack tip fields, Theor Appl Fract Mech (2014)
[13] Garg, R.; Chandra Thakur, H.; Tripathi, B., A review of applications of meshfree methods in the area of heat transfer and fluid flow: MLPG method in particular, Int Res J Eng Technol, 329-338 (2015)
[14] Gingold, R., Smoothed particle hydrodynamics-theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 375-389 (1977) · Zbl 0421.76032
[15] Monaghan, JJ., An introduction to SPH, Comput Phys Commun, 48, 89-96 (1988) · Zbl 0673.76089
[16] Liu GR, Gu YT. An introduction to meshfree methods and their programming. 2005. 10.1007/1-4020-3468-7.
[17] Lobovský, L.; Groenenboom, PHL., Smoothed particle hydrodynamics modelling in continuum mechanics: fluid-structure interaction, Appl Computa Mech, 3, 101-110 (2009)
[18] Ye, T.; Pan, D.; Huang, C.; Liu, M., Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications, Phys Fluids, 31 (2019)
[19] Han, L.; Hu, X., SPH modeling of fluid-structure interaction, J Hydrodyn Ser B (English Ed), 30, 62-69 (2018)
[20] Chew, CS; Yeo, KS; Shu, C., A generalized finite-difference (GFD) ALE scheme for incompressible flows around moving solid bodies on hybrid meshfree-Cartesian grids, J Comput Phys (2006) · Zbl 1161.76525
[21] Gu, YT., Meshfree methods and their comparisons, Int J Comput Methods, 02, 477-515 (2005) · Zbl 1137.74302
[22] Chorin, AJ., Vortex sheet approximation of boundary layers, J Comput Phys (1978) · Zbl 0387.76040
[23] Bernard, PS., A deterministic vortex sheet method for boundary layer flow, J Comput Phys (1995) · Zbl 0818.76063
[24] Li S, Liu WK. MeshFree particle methods. 2007. · Zbl 1073.65002
[25] Perrone, N.; Kao, R., A general finite difference method for arbitrary meshes, Comput Struct, 5, 45-57 (1975)
[26] Liszka, T.; Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput Struct (1980) · Zbl 0427.73077
[27] Chen, JS; Hillman, M.; Chi, S-W, Meshfree methods: progress made after 20 years, J Eng Mech, 143, Article 04017001 pp. (2017)
[28] Bathe, KJ, Finite element procedures (2014), Prentice Hall: Prentice Hall Pearson Education, Inc.
[29] Kansa, EJ., Multiquadrics - a scattered data approximation scheme with applications to computational fluid-dynamics - I, Comput Math Appl, 19, 127-145 (1990) · Zbl 0692.76003
[30] Zhang, X.; Song, KZ; Lu, MW; Liu, X., Meshless methods based on collocation with radial basis functions, Comput Mech, 26, 333-343 (2000) · Zbl 0986.74079
[31] Zongmin, W., Hermite-Birkhoff interpolation of scattered data by radial basis functions, Approx Theory Appl (1992) · Zbl 0757.41009
[32] Nayroles, B.; Touzot, G.; Villon, P., Generalizing the finite element method: Diffuse approximation and diffuse elements, Comput Mech (1992) · Zbl 0764.65068
[33] Belytschko, T.; Lu, YY; Gu, L., Element-free Galerkin methods, Int J Numer Methods Eng, 37, 229-256 (1994) · Zbl 0796.73077
[34] Gu, L.; Lu, YY; Belytschko, T., A new implementation of the element free Galerkin method, Comput Meth Appl Mech Eng, 7825, 397-414 (1994) · Zbl 0847.73064
[35] Wing Kam, L.; Sukky, J.; Yi Fei, Z., Reproducing kernel particle methods, Int J Numer Methods Fluids, 20, 1081-1106 (1995) · Zbl 0881.76072
[36] Chen, JS; Pan, C.; Wu, CT; Liu, WK, Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures, Comput Meth Appl Mech Eng, 139, 195-227 (1996) · Zbl 0918.73330
[37] Duarte, CA; Oden, JT, Hp clouds a meshless method to solve boundary-value problems, Texas institute for computational and applied mathematics (1995), The University of Texas at Austin, Texas: The University of Texas at Austin, Texas USA, Report 5-95
[38] Armando Duarte, C.; Tinsley Oden, J., H-p clouds - an h-p meshless method, Numer Methods Part Differ Equ (1996) · Zbl 0869.65069
[39] Braun, J.; Sambridge, M., A numerical method for solving partial differential equations on highly irregular evolving grids, Nature (1995)
[40] 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R · Zbl 0940.74078
[41] Melenk, JM; Babuška, I., The partition of unity finite element method: Basic theory and applications, Comput Meth Appl Mech Eng (1996) · Zbl 0881.65099
[42] Babuška, I.; Melenk, JM., The partition of unity method, Int J Numer Methods Eng (1997), 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N · Zbl 0949.65117
[43] Oñate, E.; Idelsohn, S.; Zienkiewicz, OC; Taylor, RL, A finite point method in computational mechanics. Applications to convective transport and fluid flow, Int J Numer Methods Eng, 39, 3839-3866 (1996), 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R · Zbl 0884.76068
[44] Oñate, E.; Idelsohn, S.; Zienkiewicz, OC; Taylor, RL; Sacco, C., A stabilized finite point method for analysis of fluid mechanics problems, Comput Meth Appl Mech Eng, 139, 315-346 (1996) · Zbl 0894.76065
[45] Oñate, E.; Perazzo, F.; Miquel, J., A finite point method for elasticity problems, Comput Struct (2001) · Zbl 1065.74616
[46] Koshizuka, S.; Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl Sci Eng (1996)
[47] Mukherjee, YX; Mukherjee, S., The boundary node method for potential problems, Int J Numer Methods Eng (1997), 10.1002/(sici)1097-0207(19970315)40:5<797::aid-nme89>3.0.co;2-# · Zbl 0885.65124
[48] Zhu, T.; Atluri, SN., A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Comput Mech, 21, 211-222 (1998) · Zbl 0947.74080
[49] Atluri, SN; Zhu, TL., Meshless local Petrov-Galerkin (MLPG) approach for solving problems in elasto-statics, Comput Mech, 25, 169-179 (2000) · Zbl 0976.74078
[50] Shivanian, E., Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation, Eng Anal Boundary Elem, 50, 249-257 (2015) · Zbl 1403.65076
[51] Jarak, T.; Sorić, J.; Hoster, J., Analysis of shell deformation responses by the Meshless Local Petrov-Galerkin (MLPG) approach, CMES - Comput Model Eng Sci, 18, 235-246 (2007) · Zbl 1184.74023
[52] Gu, YT; Liu, GR., A local point interpolation method for static and dynamic analysis of thin beams, Comput Meth Appl Mech Eng, 190, 5515-5528 (2001) · Zbl 1059.74060
[53] Liu, GR; Gu, YT., A point interpolation method for two-dimensional solids, Int J Numer Methods Eng, 50, 937-951 (2001), 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X · Zbl 1050.74057
[54] Gu, YT; Liu, GR., A boundary point interpolation method for stress analysis of solids, Comput Mech (2001)
[55] Liu, GR; Gu, YT, A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids, J Sound Vib (2001)
[56] De, S.; Bathe, KJ., The method of finite spheres, Comput Mech (2000) · Zbl 0952.65091
[57] Lai, B.; Bathe, KJ., The method of finite spheres in three-dimensional linear static analysis, Comput Struct (2016)
[58] De, S.; Hong, JW; Bathe, KJ, On the method of finite spheres in applications: Towards the use with ADINA and in a surgical simulator, Comput Mech (2003) · Zbl 1038.74675
[59] Liu, GR; Gu, YT, A meshfree method: Meshfree weak-strong (MWS) form method, for 2-D solids, Comput Mech (2003) · Zbl 1063.74105
[60] Gu, YT; Liu, GR, A meshfree weak-strong (MWS) form method for time dependent problems, Comput Mech (2005) · Zbl 1109.74371
[61] Liu, GR; Wu, YL; Ding, H., Meshfree weak-strong (MWS) form method and its application to incompressible flow problems, Int J Numer Methods Fluids (2004) · Zbl 1060.76627
[62] Idelsohn, SR; Oñate, E.; Del Pin, F., A Lagrangian meshless finite element method applied to fluid-structure interaction problems, Comput Struct (2003)
[63] Idelsohn, SR; Onate, E.; Del Pin, F., The particle finite element method: A powerful tool to solve incompressible flows with free-surfaces and breaking waves, Int J Numer Methods Eng (2004) · Zbl 1075.76576
[64] Idelsohn, S.; Nigro, N.; Limache, A.; Oñate, E., Large time-step explicit integration method for solving problems with dominant convection, Comput Meth Appl Mech Eng (2012) · Zbl 1253.76120
[65] Zhang, L.; Gerstenberger, A.; Wang, X.; Liu, WK, Immersed finite element method, Comput Meth Appl Mech Eng, 193, 2051-2067 (2004) · Zbl 1067.76576
[66] Liu, WK; Kim, DW; Tang, S., Mathematical foundations of the immersed finite element method, Comput Mech (2007) · Zbl 1178.74170
[67] Pita CM. Modeling of oxide bifilms in aluminum castings using the immersed element-free Galerkin method 2009.
[68] Pita, CM; Felicelli, SD., Fluid-solid interaction problems with thermal convection using the immersed element-free Galerkin method, Int J Numer Methods Fluids (2010) · Zbl 1422.74034
[69] Liu, GR; Zhang, GY; Dai, KY; Wang, YY; Zhong, ZH; Li, GY, A linearly conforming point interpolation method (LC-PIM) for 2D solid mechanics problems, Int J Comput Methods (2005) · Zbl 1137.74303
[70] Liu, GR, Meshfree methods: moving beyond the finite element method (2009), CRC Press
[71] Gori, L.; Silva Penna, S.; da Silva Pitangueira, RL, Smoothed point interpolation methods for the regularization of material instabilities in scalar damage models, Int J Numer Methods Eng (2019)
[72] Rabczuk, T.; Areias, P., A meshfree thin shell for arbitrary evolving cracks based on an extrinsic basis, CMES Comput Model Eng Sci (2006)
[73] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Methods Eng, 46, 131-150 (1999), 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.0.CO;2-J · Zbl 0955.74066
[74] Pommier S, Gravouil A, Combescure A, Moës N. Extended finite element method for crack propagation. 2013. 10.1002/9781118622650. · Zbl 1213.74004
[75] Fries, TP; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Int J Numer Methods Eng, 84, 253-304 (2010) · Zbl 1202.74169
[76] Liu, GR; Dai, KY; Nguyen, TT, A smoothed finite element method for mechanics problems, Comput Mech (2007) · Zbl 1169.74047
[77] Liu GR, Trung NT. Smoothed finite element methods. 2016. 10.1201/ebk1439820278.
[78] Zeng, W.; Liu, GR, Smoothed finite element methods (S-FEM): an overview and recent developments, Arch Comput Meth Eng, 25, 397-435 (2018) · Zbl 1398.65312
[79] Pita, C., Applications of the immersed element-free Galerkin method, Methods Their Appl, XXVII, 10-13 (2008)
[80] Benson, DJ; Bazilevs, Y.; de Luycker, E.; Hsu, MC; Scott, M.; Hughes, TJR, A generalized finite element formulation for arbitrary basis functions: From isogeometric analysis to XFEM, Int J Numer Methods Eng (2010) · Zbl 1197.74177
[81] Ghorashi, SS; Valizadeh, N.; Mohammadi, S., Extended isogeometric analysis for simulation of stationary and propagating cracks, Int J Numer Methods Eng (2012) · Zbl 1242.74119
[82] Gu, J.; Yu, T.; Van, Lich L.; Tanaka, S.; Yuan, H.; Bui, TQ, Crack growth adaptive XIGA simulation in isotropic and orthotropic materials, Comput Meth Appl Mech Eng (2020) · Zbl 1442.74203
[83] Boroomand, B.; Soghrati, S.; Movahedian, B., Exponential basis functions in solution of static and time harmonic elastic problems in a meshless style, Int J Numer Methods Eng (2010) · Zbl 1183.74350
[84] Abarghooei HP, Boroomand B. Simulating fluid and structure interaction using exponential basis functions 2018;11:787-99. 10.29252/jafm.11.03.
[85] Mossaiby, F.; Ghaderian, M.; Rossi, R., Implementation of a generalized exponential basis functions method for linear and non-linear problems, Int J Numer Methods Eng (2016) · Zbl 1360.65289
[86] Cao, Y.; Yao, L.; Yin, Y., New treatment of essential boundary conditions in EFG method by coupling with RPIM, Acta Mech Solida Sin (2013)
[87] Kumar, S.; Singh I, V., Mishra BK. A coupled finite element and element-free Galerkin approach for the simulation of stable crack growth in ductile materials, Theor Appl Fract Mech (2014)
[88] Namakian, R.; Shodja, HM; Mashayekhi, M., Fully enriched weight functions in mesh-free methods for the analysis of linear elastic fracture mechanics problems, Eng Anal Boundary Elem (2014) · Zbl 1297.74125
[89] Pant, M.; Bhattacharya, S., Fatigue crack growth analysis of functionally graded materials by EFGM and XFEM, Int J Comput Methods (2017) · Zbl 1404.74152
[90] Khosravifard, A.; Hematiyan, MR; Bui, TQ; Do, TV, Accurate and efficient analysis of stationary and propagating crack problems by meshless methods, Theor Appl Fract Mech (2017)
[91] Tan, F.; Jiao, YY., The combination of the boundary element method and the numerical manifold method for potential problems, Eng Anal Boundary Elem (2017) · Zbl 1403.65230
[92] Babuška, I.; Banerjee, U., Stable Generalized Finite Element Method (SGFEM), Comput Meth Appl Mech Eng (2012) · Zbl 1239.74093
[93] Gupta, V.; Duarte, CA; Babuška, I.; Banerjee, U., A stable and optimally convergent generalized FEM (SGFEM) for linear elastic fracture mechanics, Comput Meth Appl Mech Eng (2013) · Zbl 1286.74102
[94] Gupta, V.; Duarte, CA; Babuška, I.; Banerjee, U., Stable GFEM (SGFEM): Improved conditioning and accuracy of GFEM/XFEM for three-dimensional fracture mechanics, Comput Meth Appl Mech Eng (2015) · Zbl 1423.74886
[95] Guan, PC; Chi, SW; Chen, JS; Slawson, TR; Roth, MJ, Semi-Lagrangian reproducing kernel particle method for fragment-impact problems, Int J Impact Eng (2011)
[96] Chi, S-W; Lee, C-H; Chen, J-S; Guan, P-C, A level set enhanced natural kernel contact algorithm for impact and penetration modeling, Int J Numer Methods Eng (2015) · Zbl 1352.74139
[97] Simpson, R.; Trevelyan, J., A partition of unity enriched dual boundary element method for accurate computations in fracture mechanics, Comput Meth Appl Mech Eng (2011) · Zbl 1225.74117
[98] Idelsohn, SR; Marti, J.; Becker, P.; Oñate, E., Analysis of multifluid flows with large time steps using the particle finite element method, Int J Numer Methods Fluids (2014) · Zbl 1455.76147
[99] Chi, SW; Chen, JS; Hu, HY; Yang, JP, A gradient reproducing kernel collocation method for boundary value problems, Int J Numer Methods Eng (2013)
[100] Yang, JP; Lam, HFS., Detecting inverse boundaries by weighted high-order gradient collocation method, Mathematics (2020)
[101] Mahdavi, A.; Chi, SW; Zhu, H., A gradient reproducing kernel collocation method for high order differential equations, Comput Mech (2019) · Zbl 1470.74074
[102] Wang, D.; Chen, P., Quasi-convex reproducing kernel meshfree method, Comput Mech (2014) · Zbl 1311.65152
[103] Wang, D.; Zhang, H., A consistently coupled isogeometric-meshfree method, Comput Meth Appl Mech Eng (2014) · Zbl 1295.65015
[104] Yoon, YC; Song, JH., Extended particle difference method for weak and strong discontinuity problems: Part II. Formulations and applications for various interfacial singularity problems, Comput Mech (2014)
[105] Yoon, YC; Song, JH., Extended particle difference method for weak and strong discontinuity problems: Part I. Derivation of the extended particle derivative approximation for the representation of weak and strong discontinuities, Comput Mech (2014) · Zbl 1398.74482
[106] Nguyen, NT; Bui, TQ; Zhang, C.; Truong, TT, Crack growth modeling in elastic solids by the extended meshfree Galerkin radial point interpolation method, Eng Anal Boundary Elem (2014) · Zbl 1297.74108
[107] Thai, CH; Nguyen, TN; Rabczuk, T.; Nguyen-Xuan, H., An improved moving Kriging meshfree method for plate analysis using a refined plate theory, Comput Struct (2016)
[108] Van, Vu T.; Khosravifard, A.; Hematiyan, MR; Bui, TQ, Enhanced meshfree method with new correlation functions for functionally graded plates using a refined inverse sin shear deformation plate theory, Eur J Mech A/Solids (2019) · Zbl 1406.74456
[109] Van, Vu T.; Khosravifard, A.; Hematiyan, MR; Bui, TQ, A new refined simple TSDT-based effective meshfree method for analysis of through-thickness FG plates, Appl Math Modell (2018) · Zbl 1480.74209
[110] Li, M.; Meng, LX; Hinneh, P.; Wen, PH, Finite block method for interface cracks, Eng Fract Mech (2016)
[111] Garg, S.; Pant, M., Numerical simulation of adiabatic and isothermal cracks in functionally graded materials using optimized element-free Galerkin method, J Thermal Stresses (2017)
[112] Sayyidmousavi, A.; Daneshmand, F.; Foroutan, M.; Fawaz, Z., A new meshfree method for modeling strain gradient microbeams, J Brazil Soc Mech Sci Eng (2018)
[113] Saucedo-Zendejo, FR; Reséndiz-Flores, EO., A new approach for the numerical simulation of free surface incompressible flows using a meshfree method, Comput Meth Appl Mech Eng (2017) · Zbl 1439.76130
[114] Mirzaei, D.; Schaback, R., Direct meshless local Petrov-Galerkin (DMLPG) method: a generalized MLS approximation, Appl Numer Math, 68, 73-82 (2013) · Zbl 1263.65118
[115] Mirzaei, D., A new low-cost meshfree method for two and three dimensional problems in elasticity, Appl Math Modell (2014)
[116] Atluri, SN; Zhu, T., A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput Mech, 22, 117-127 (1998) · Zbl 0932.76067
[117] Ding, H.; Shu, C.; Yeo, KS; Xu, D., Simulation of incompressible viscous flows past a circular cylinder by hybrid FD scheme and meshless least square-based finite difference method, Comput Meth Appl Mech Eng (2004) · Zbl 1068.76062
[118] Dai, B.; Zheng, B.; Liang, Q.; Wang, L., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl Math Comput, 219, 10044-10052 (2013) · Zbl 1307.80008
[119] Gu, L., Moving Kriging interpolation and element-free Galerkin method, Int J Numer Methods Eng, 56, 1-11 (2019) · Zbl 1062.74652
[120] Zhu, P.; Zhang, LW; Liew, KM, Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos Struct, 107, 298-314 (2014)
[121] Gosz, J.; Liu, WK., Admissible approximations for essential boundary conditions in the reproducing kernel particle method, Comput Mech (1996) · Zbl 0889.73078
[122] Chen J-S, Liu WK, Hillman MC, Chi S-W, Lian Y, Bessa MA. Reproducing kernel particle method for solving partial differential equations. 2017. 10.1002/9781119176817.ecm2104.
[123] Weng, YJ; Zhang, Z.; Cheng, YM, The complex variable reproducing kernel particle method for two-dimensional inverse heat conduction problems, Eng Anal Boundary Elem, 44, 36-44 (2014) · Zbl 1297.65117
[124] Daxini, SD; Prajapati, JM., A review on recent contribution of meshfree methods to structure and fracture mechanics applications, Sci World J, 2014, 1-13 (2014)
[125] Pita, CM; Felicelli, SD., A fluid-structure interaction method for highly deformable solids, Comput Struct, 88, 255-262 (2010)
[126] Pandey SS, Kasundra PK, Daxini SD, College BHG, Rajkot T. Introduction of meshfree methods and implementation of element free Galerkin (EFG) method to beam problem 2013:85-9.
[127] Fleming, M.; Chu, YA; Moran, B.; Belytschko, T., Enriched element-free Galerkin methods for crack tip fields, Int J Numer Methods Eng, 40, 1483-1504 (1997), 10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
[128] Belytschko, T.; Lu, YY; Gu, L.; Tabbara, M., Element-free galerkin methods for static and dynamic fracture, Int J Solids Struct, 32, 2547-2570 (1995) · Zbl 0918.73268
[129] Ponthot, JP; Belytschko, T., Arbitrary Lagrangian-Eulerian formulation for element-free Galerkin method, Comput Meth Appl Mech Eng (1998) · Zbl 0961.74079
[130] Froehle BM. High-order discontinuous Galerkin Fluid-structure interaction methods. 2013.
[131] Gandomkar, M.; Dibajian, SH; Farzin, M.; Hashemolhoseini, SH, An integration procedure for meshless methods using Kriging interpolations, Ind J Sci Technol, 6, 3859-3867 (2013)
[132] Nguyen, VP; Rabczuk, T.; Bordas, S.; Duflot, M., Meshless methods: A review and computer implementation aspects, Math Comput Simul, 79, 763-813 (2008) · Zbl 1152.74055
[133] Mazhar, F.; Javed, A., Weak-form based meshfree methods: element free Galerkin method (EFG) - an overview, (Proceedings of the17th international Bhurban conference on applied sciences and technology, IBCAST 2020 (2020))
[134] Dolbow, J.; Belytschko, T., Numerical integration of the Galerkin weak form in meshfree methods, Comput Mech, 23, 219-230 (1999) · Zbl 0963.74076
[135] Beissel, S.; Belytschko, T., Nodal integration of the element-free Galerkin method, Comput Meth Appl Mech Eng, 139, 49-74 (1996) · Zbl 0918.73329
[136] Chen, J-S; Wu, C-T; Yoon, S.; You, Y., A stabilized conforming nodal integration for Galerkin mesh-free methods, Int J Numer Methods Eng, 50, 435-466 (2001), 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A · Zbl 1011.74081
[137] Puso, MA; Chen, JS; Zywicz, E.; Elmer, W., Meshfree and finite element nodal integration methods, Int J Numer Methods Eng (2008) · Zbl 1159.74456
[138] Belytschko, T.; Guo, Y.; Liu, WK; Xiao, SP, A unified stability analysis of meshless particle methods, Int J Numer Methods Eng, 48, 1359-1400 (2000), 10.1002/1097-0207(20000730)48:9<1359::AID-NME829>3.0.CO;2-U · Zbl 0972.74078
[139] Du M, Nguyen-dang H. A truly meshless Galerkin method based on a moving least squares quadrature 2002;449:441-9. 10.1002/cnm.503. · Zbl 1008.74082
[140] Carpinteri A, Ferro G, Ventura G. The partition of unity quadrature in meshless methods 2002;1006:987-1006. 10.1002/nme.455. · Zbl 1028.74047
[141] Ortiz-Bernardin, A.; Hale, JS; Cyron, CJ, Volume-averaged nodal projection method for nearly-incompressible elasticity using meshfree and bubble basis functions, Comput Meth Appl Mech Eng, 285, 427-451 (2015) · Zbl 1423.74911
[142] Duan, Q.; Li, X.; Zhang, H.; Belytschko, T., Second-order accurate derivatives and Integration schemes for meshfree methods, Int J Numer Methods Eng (2012) · Zbl 1352.65390
[143] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H., A four-point integration scheme with quadratic exactness for three-dimensional element-free Galerkin method based on variationally consistent formulation, Comput Meth Appl Mech Eng, 280, 84-116 (2014) · Zbl 1423.74877
[144] Duan, Q.; Gao, X.; Wang, B.; Li, X.; Zhang, H.; Belytschko, T., Consistent element-free Galerkin method, Int J Numer Methods Eng (2014) · Zbl 1292.65125
[145] Chen, JS; Hillman, M.; Rüter, M., An arbitrary order variationally consistent integration for Galerkin meshfree methods, Int J Numer Methods Eng (2013) · Zbl 1352.65481
[146] Rohit, GR; Prajapati, JM; Patel, VB, Coupling of finite element and meshfree method for structure mechanics application: a review, Int J Comput Methods, Article 1850151 pp. (2018)
[147] Liu, GR; Huynh, DBP; Gu, YT, An adaptive meshfree collocation method for static and dynamic nonlinear problems, Comput Methods (2007)
[148] Khattak, AJ; Tirmizi, SIA; Siraj-ul-Islam, Application of meshfree collocation method to a class of nonlinear partial differential equations, Eng Anal Boundary Elem (2009) · Zbl 1244.65149
[149] Shojaei, A.; Mudric, T.; Zaccariotto, M.; Galvanetto, U., A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis, Int J Mech Sci (2016)
[150] Ortega, E.; Oñate, E.; Idelsohn, S.; Flores, R., A meshless finite point method for three-dimensional analysis of compressible flow problems involving moving boundaries and adaptivity, Int J Numer Methods Fluids (2013) · Zbl 1455.65177
[151] Van Renterghem, T., Efficient outdoor sound propagation modeling with the finite-difference time-domain (FDTD) method: a review, Int J Aeroacoust, 13, 385-404 (2014)
[152] Siraj-Ul-Islam, Vertnik R.; Šarler, B., Local radial basis function collocation method along with explicit time stepping for hyperbolic partial differential equations, Appl Numer Math, 67, 136-151 (2013) · Zbl 1263.65099
[153] Javed, A.; Mazhar, F.; Shams, TA; Ayaz, M.; Hussain, N., A stabilized RBF finite difference method for convection dominated flows over meshfree nodes, Eng Anal Boundary Elem (2019) · Zbl 1464.76125
[154] Javed, A.; Baig, AA; Djidjeli, K.; Shahzad, A.; Hameed, A., Upwind skewed radial basis functions (USRBF) for solution of highly convective problems over meshfree nodes, Eng Comput (2019)
[155] Liu, WK; Han, W.; Lu, H.; Li, S.; Cao, J., Reproducing kernel element method Part i: theoretical formulation, Comput Meth Appl Mech Eng (2004)
[156] Lu, H.; Li, S.; Simkins, DC; Liu, WK; Cao, J., Reproducing kernel element method. Part III: Generalized enrichment and applications, Comput Meth Appl Mech Eng (2004)
[157] Li, S.; Liu, WK, Meshfree and particle methods and their applications, Appl Mech Rev, 55, 1 (2002)
[158] Fernández-Méndez, S.; Huerta, A., Imposing essential boundary conditions in mesh-free methods, Comput Meth Appl Mech Eng, 193, 1257-1275 (2004) · Zbl 1060.74665
[159] Ted, B.; Robert, G.; Giulio, V., A review of extended/generalized finite element methods for material modeling, Model Simul Mater Sci Eng, 17, 43001 (2009)
[160] Yazid, A.; Abdelkader, N.; Abdelmadjid, H., A state-of-the-art review of the X-FEM for computational fracture mechanics, Appl Math Modell, 33, 4269-4282 (2009) · Zbl 1172.74050
[161] Liu, GR., An Overview on Meshfree Methods: For Computational Solid Mechanics, Int J Comput Methods, 13, Article 1630001 pp. (2016) · Zbl 1359.74388
[162] Shadloo, MS; Oger, G.; Le Touzé, D., Smoothed particle hydrodynamics method for fluid flows, towards industrial applications: Motivations, current state, and challenges, Comput Fluids, 136, 11-34 (2016) · Zbl 1390.76764
[163] Gao, XW; Gao, LF; Zhang, Y.; Cui, M.; Lv, J., Free element collocation method: A new method combining advantages of finite element and mesh free methods, Comput Struct, 215, 10-26 (2019)
[164] Trobec, R.; Kosec, G.; Šterk, M.; Šarler, B., Comparison of local weak and strong form meshless methods for 2-D diffusion equation, Eng Anal Boundary Elem, 36, 310-321 (2012) · Zbl 1245.76085
[165] Wang, L.; Tian, FB., Numerical simulation of flow over a parallel cantilevered flag in the vicinity of a rigid wall, Phys Rev E (2019)
[166] Schuster, A.; Reimer, L.; Neumann, J., A mesh-free parallel moving least-squares-based interpolation method for the application in aeroelastic simulations with the flow simulator, Notes Numer Fluid Mech Multidiscipl Des (2016)
[167] Sun, PN; Colagrossi, A.; Zhang, AM, Numerical simulation of the self-propulsive motion of a fishlike swimming foil using the δ+-SPH model, Theor Appl Mech Lett (2018)
[168] Yao, Y.; Yeo, KS; Nguyen, TT, A numerical study on free hovering fruit-fly with flexible wings, IUTAM Bookseries (2019)
[169] Javed, A.; Djijdeli, K.; Xing, JT, A coupled meshfree-mesh-based solution scheme on hybrid grid for flow-induced vibrations, Acta Mech (2016)
[170] Jamil, Muhammad; Javed, Ali; Shah, Syed Irtiza Ali; Mohtashim, Mansoor; Hameed Asad, DK, Performance analysis of flapping foil flow energy harvester mounted on piezoelectric transducer using meshfree particle method, J Appl Fluid Mech (2020)
[171] Hou, G.; Wang, J.; Layton, A., Numerical methods for fluid-structure interaction — a review, Commun Comput Phys, 12, 337-377 (2012) · Zbl 1373.76001
[172] Korobenko, A.; Yan, J.; Gohari, SMI; Sarkar, S.; Bazilevs, Y., FSI Simulation of two back-to-back wind turbines in atmospheric boundary layer flow, Comput Fluids (2017) · Zbl 1390.86036
[173] Sayed, M.; Lutz, T.; Krämer, E.; Shayegan, S.; Wüchner, R., Aeroelastic analysis of 10 MW wind turbine using CFD-CSD explicit FSI-coupling approach, J Fluids Struct (2019)
[174] Abdelkefi, A., Aeroelastic energy harvesting: a review, Int J Eng Sci, 100, 112-135 (2016)
[175] Javed, A.; Djidjeli, K.; Naveed, A.; Xing, JT, Low Reynolds number effect on energy extraction performance of semi-passive flapping foil, J Appl Fluid Mech (2018)
[176] Mumtaz Qadri, MN; Shahzad, A.; Zhao, F.; Tang, H., An experimental investigation of a passively flapping foil in energy harvesting mode, J Appl Fluid Mech (2019)
[177] Liu, G.; Geng, B.; Zheng, X.; Xue, Q.; Wang, J.; Dong, H., An integrated high-fidelity approach for modeling flow-structure interaction in biological propulsion and its strong validation, (Proceedings of the AIAA aerospace sciences meeting (2018)), 2018
[178] Taheri, A., Lagrangian coherent structure analysis of jellyfish swimming using immersed boundary fsi simulations, J Mech Civil Eng, 15, 69-74 (2018)
[179] Vardakis, JC; Guo, L.; Peach, TW; Lassila, T.; Mitolo, M.; Chou, D., Fluid-structure interaction for highly complex, statistically defined, biological media: Homogenisation and a 3D multi-compartmental poroelastic model for brain biomechanics, J Fluids Struct (2019)
[180] Sundström, E.; Jonnagiri, R.; Gutmark-Little, I.; Gutmark, E.; Critser, P.; Taylor, MD, Effects of normal variation in the rotational position of the aortic root on hemodynamics and tissue biomechanics of the thoracic aorta, Cardiovasc Eng Technol (2020)
[181] Farhat, C.; Lesoinne, M.; LeTallec, P., Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput Meth Appl Mech Eng, 157, 95-114 (1998) · Zbl 0951.74015
[182] Dowell, EH; Hall, KC., Modeling of fluid-structure interaction, Annu Rev Fluid Mech, 33, 445-490 (2001) · Zbl 1052.76059
[183] Feistauer, M.; Horáček, J.; Růžička, M.; Sváček, P., Numerical analysis of flow-induced nonlinear vibrations of an airfoil with three degrees of freedom, Comput Fluids (2011) · Zbl 1271.76165
[184] Khan, MKA; Javed, A.; Qadri, NM; Mansoor, M.; Mazhar, F., An overview of methods for investigation of aeroelastic response on high aspect ratio fixed-winged aircraft, (Proceedings of the IOP conference series: materials science and engineering, 899 (2020), IOP Publishing), 12002
[185] Vetsch D. Numerical Simulation of Sediment Transport with Meshfree Methods. Thesis 2012:207.
[186] Fornari, W.; Picano, F.; Brandt, L., Sedimentation of finite-size spheres in quiescent and turbulent environments, J Fluid Mech (2016) · Zbl 1381.76371
[187] Ma, J.; Wang, Z.; Young, J.; Lai, JCS; Sui, Y.; Tian, FB, An immersed boundary-lattice Boltzmann method for fluid-structure interaction problems involving viscoelastic fluids and complex geometries, J Comput Phys (2020) · Zbl 1440.76117
[188] Hughes, K.; Vignjevic, R.; Campbell, J.; De Vuyst, T.; Djordjevic, N.; Papagiannis, L., From aerospace to offshore: Bridging the numerical simulation gaps-Simulation advancements for fluid structure interaction problems, Int J Impact Eng, 61, 48-63 (2013)
[189] Gotoh, H.; Khayyer, A., Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering, J Ocean Eng Marine Energy, 2, 251-278 (2016)
[190] Francomano, E.; Ala, G.; Paliaga, M., Improved fast Gauss transform for meshfree electromagnetic transients simulations, Appl Math Lett (2019) · Zbl 1459.78001
[191] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput Meth Appl Mech Eng, 278, 479-498 (2014) · Zbl 1423.82009
[192] Pearson, MR; Seyed-Yagoobi, J., Electrohydrodynamic conduction driven single- and two-phase flow in microchannels with heat transfer, J Heat Transfer (2013)
[193] Almasi, F.; Shadloo, MS; Hadjadj, A.; Ozbulut, M.; Tofighi, N.; Yildiz, M., Numerical simulations of multi-phase electro-hydrodynamics flows using a simple incompressible smoothed particle hydrodynamics method, Comput Math Appl (2019) · Zbl 07288744
[194] Wang, Y.; Yin, Z.; Jiang, D.; Gao, G.; Zhang, X., Study of the lubrication performance of water-lubricated journal bearings with CFD and FSI method, Ind Lubr Tribol (2016)
[195] Xie, Z.; Song, P.; Hao, L.; Shen, N.; Zhu, W.; Liu, H., Investigation on effects of Fluid-Structure-Interaction (FSI) on the lubrication performances of water lubricated bearing in primary circuit loop system of nuclear power plant, Ann Nucl Energy (2020)
[196] Zienkiewicz OC, Taylor RL, Nithiarasu P. The finite element method for fluid dynamics Seventh Ed. 2013. 10.1016/C2009-0-26328-8. · Zbl 1278.76006
[197] Liu, X., A monolithic lagrangian meshfree method for fluid-structure interaction (2016), Case Western Reserve University
[198] Moubachir M, Zolésio JP. Moving shape analysis and control: Applications to fluid structure interactions. 2006. · Zbl 1117.49003
[199] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261 (2005) · Zbl 1117.76049
[200] Sotiropoulos, F.; Yang, X., Immersed boundary methods for simulating fluid-structure interaction, Prog Aerosp Sci, 65, 1-21 (2014)
[201] Degroote, J.; Bathe, KJ; Vierendeels, J., Performance of a new partitioned procedure versus a monolithic procedure in fluid-structure interaction, Comput Struct, 87, 793-801 (2009)
[202] Bogaers, AEJ; Kok, S.; Reddy, BD; Franz, T., Quasi-Newton methods for implicit black-box FSI coupling, Comput Meth Appl Mech Eng (2014) · Zbl 1423.74259
[203] Zhang, Q.; Song, C., Multiphysics Modeling: Numerical Methods and Engineering Applications (2016), Tsinghua University Press
[204] Kalateh, F.; Koosheh, A., Application of SPH-FE method for fluid-structure interaction using immersed boundary method, Eng Comput, 35, 2802-2824 (2018)
[205] Meduri, S., A fully explicit Lagrangian Finite Element Method for highly nonlinear Fluid-Structure Interaction problems, Politecnico di Milano (2019)
[206] Razzaq, M., Finite element simulation techniques for incompressible fluid-structure interaction with applications to bio-engineering and optimization, TU Dortmund (2011)
[207] Turek, S.; Hron, J., Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow, Lecture Notes Comput Sci Eng, 53, 371-385 (2006) · Zbl 1323.76049
[208] Habchi, C.; Russeil, S.; Bougeard, D.; Harion, JL; Lemenand, T.; Ghanem, A., Partitioned solver for strongly coupled fluid-structure interaction, Comput Fluids (2013) · Zbl 1365.76155
[209] Kassiotis, C.; Ibrahimbegovic, A.; Niekamp, R.; Matthies, HG, Nonlinear fluid-structure interaction problem. Part I: Implicit partitioned algorithm, nonlinear stability proof and validation examples, Comput Mech (2011) · Zbl 1398.74084
[210] Dettmer, W.; Perić, D., A computational framework for fluid-structure interaction: Finite element formulation and applications, Comput Meth Appl Mech Eng, 195, 5754-5779 (2006) · Zbl 1155.76354
[211] Matthies, HG; Matthies, HG., Partitioned strong coupling algorithms for fluid-structure-interaction, Computing (2002)
[212] Sanchez, R.; Palacios, R.; Economon, TD; Kline, HL; Alonso, JJ; Palacios, F., Towards a fluid-structure interaction solver for problems with large deformations within the open-source SU2 suite, (Proceedings of the 57th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference (2015))
[213] Antoci, C.; Gallati, M.; Sibilla, S., Numerical simulation of fluid-structure interaction by SPH, Comput Struct, 85, 879-890 (2007)
[214] Khayyer, A.; Gotoh, H.; Falahaty, H.; Shimizu, Y., Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction, J Hydrodyn Ser B (English Ed), 30, 49-61 (2018)
[215] Dinçer, AE; Demir, A.; Bozkus, Z.; Tijsseling, AS, Fully coupled SPH-FEM approach for FSI problems with large deflections, J Fluids Eng (2019)
[216] Taylor, P.; Chinchapatnam, PP; Djidjeli, K.; Nair, PB, Radial basis function meshless method for the steady incompressible Navier - Stokes equations, Int J Comput Math, 84, 1509-1521 (2007), http://dx.doi.org/10.1080/00207160701308309 · Zbl 1123.76048
[217] Javed A. Investigation on Meshfree Particle Methods for Fluid Structure Interaction Problems. 2015.
[218] He, Y.; Bayly, AE; Hassanpour, A., Coupling CFD-DEM with dynamic meshing: A new approach for fluid-structure interaction in particle-fluid flows, Powder Technol (2018)
[219] Kang, YS; Sohn, D.; Kim, JH; Kim, HG; Im, S., A sliding mesh technique for the finite element simulation of fluid-solid interaction problems by using variable-node elements, Comput Struct, 130, 91-104 (2014)
[220] Franci, A., Unified lagrangian formulation for fluid and solid mechanics, Fluid-Structure Interaction and Coupled Thermal Problems Using the PFEM (2017), Springer International Publishing: Springer International Publishing Switzerland · Zbl 1366.76001
[221] Peseux, B.; Gornet, L.; Donguy, B., Hydrodynamic impact: numerical and experimental investigations, J Fluids Struct (2005)
[222] Scolan, YM., Hydroelastic behaviour of a conical shell impacting on a quiescent-free surface of an incompressible liquid, J Sound Vib (2004)
[223] Kusić, MS; Radnić, J.; Grgić, N.; Harapin, A., Fluid structure interaction analysis of liquid tanks by the coupled SPH - FEM method with experimental verification, Defect Diffus Forum, 391, 152-173 (2019)
[224] Tsuruta, N.; Khayyer, A.; Gotoh, H., Space potential particles to enhance the stability of projection-based particle methods, Int J Comput Fluid Dyn (2015) · Zbl 07514817
[225] Liao, K.; Hu, C.; Sueyoshi, M., Free surface flow impacting on an elastic structure: Experiment versus numerical simulation, Appl Ocean Res (2015)
[226] Richter, T.; Wick, T., Finite elements for fluid-structure interaction in ALE and fully Eulerian coordinates, Comput Meth Appl Mech Eng, 199, 2633-2642 (2010) · Zbl 1231.74436
[227] Rabczuk, T.; Gracie, R.; Song, JH; Belytschko, T., Immersed particle method for fluid-structure interaction, Int J Numer Methods Eng (2010) · Zbl 1183.74367
[228] Yeo, KS; Ang, SJ; Shu, C., Simulation of fish swimming and manoeuvring by an SVD-GFD method on a hybrid meshfree-Cartesian grid, Comput Fluids (2010) · Zbl 1242.76377
[229] Li, X., The meshless Galerkin boundary node method for Stokes problems in three dimensions, Int J Numer Methods Eng (2011) · Zbl 1242.76244
[230] Han, K.; Feng, YT; Owen, DRJ, Numerical simulations of irregular particle transport in turbulent flows using coupled LBM-DEM, CMES Comput Model Eng Sci (2007) · Zbl 1184.76794
[231] Rafiee, A.; Thiagarajan, KP., An SPH projection method for simulating fluid-hypoelastic structure interaction, Comput Meth Appl Mech Eng, 198, 2785-2795 (2009) · Zbl 1228.76117
[232] man, Zhang A.; nan, Sun P.; ren, Ming F.; Colagrossi, A., Smoothed particle hydrodynamics and its applications in fluid-structure interactions, J Hydrodyn Ser B (English Ed), 29, 187-216 (2017)
[233] Fourey, G.; Hermange, C.; Le Touzé, D.; Oger, G., An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods, Comput Phys Commun, 217, 66-81 (2017) · Zbl 1411.76130
[234] Li, Z.; Leduc, J.; Nunez-Ramirez, J.; Combescure, A.; Marongiu, JC, A non-intrusive partitioned approach to couple smoothed particle hydrodynamics and finite element methods for transient fluid-structure interaction problems with large interface motion, Comput Mech, 55, 697-718 (2015) · Zbl 1334.76081
[235] Chinchapatnam, PP; Djidjeli, K.; Nair, PB; Tan, M., A compact RBF-FD based meshless method for the incompressible Navier-Stokes equations, Proc Inst Mech Eng Part M J Eng Marit Environ, 223, 275-290 (2009)
[236] Mazhar, F.; Khan, AM; Chaudhry, IA; Ahsan, M., On using neural networks in UAV structural design for CFD data fitting and classification, Aerosp Sci Technol, 30, 210-225 (2013)
[237] Vignjevic, R.; Reveles, JR; Campbell, J., SPH in a total lagrangian formalism, CMES - Comput Model Eng Sci (2006) · Zbl 1357.76072
[238] Hwang, SC; Khayyer, A.; Gotoh, H.; Park, JC, Development of a fully Lagrangian MPS-based coupled method for simulation of fluid-structure interaction problems, J Fluids Struct, 50, 497-511 (2014)
[239] Sun, Z.; Djidjeli, K.; Xing, JT; cheng, F., Modified MPS method for the 2D fluid structure interaction problem with free surface, Comput Fluids (2015) · Zbl 1390.76769
[240] Sun, Z.; Djidjeli, K.; Xing, JT; Cheng, F., Coupled MPS-modal superposition method for 2D nonlinear fluid-structure interaction problems with free surface, J Fluids Struct, 61, 295-323 (2016)
[241] Xing, JT., Developments of numerical methods for linear and nonlinear fluid-solid interaction dynamics with applications, Adv Mech (2016)
[242] Wu, QR; Tan, MY; Xing, JT, An improved moving particle semi-implicit method for dam break simulation, J Ship Mech (2014)
[243] Shahzad, A.; Tian, FB; Young, J.; Lai, JCS, Effects of wing shape, aspect ratio and deviation angle on aerodynamic performance of flapping wings in hover, Phys Fluids (2016)
[244] Shahzad, A.; Tian, FB; Young, J.; Lai, JCS, Aerodynamic hovering performance of rigid and flexible wing planform shapes, (Proceedings of the 20th Australasian fluid mechanics conference (2016), AFMC), 2016
[245] Shahzad, A.; Tian, FB; Young, J.; Lai, JCS, Effects of flexibility on the hovering performance of flapping wings with different shapes and aspect ratios, J Fluids Struct (2018)
[246] Wu, K.; Yang, D.; Wright, N., A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure, Comput Struct, 177, 141-161 (2016)
[247] Yu, P.; Yeo, KS; Shyam Sundar, D.; Ang, SJ, A three-dimensional hybrid meshfree-Cartesian scheme for fluid-body interaction, Int J Numer Methods Eng (2011) · Zbl 1242.76218
[248] Zhang, ZQ; Liu, GR; Khoo, BC, A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems, Comput Mech (2013) · Zbl 1312.74049
[249] Shi, X.; Lim, SP., A LBM-DLM/FD method for 3D fluid-structure interactions, J Comput Phys (2007) · Zbl 1121.76051
[250] Fan, J.; Liao, H.; Ke, R.; Kucukal, E.; Gurkan, UA; Shen, X., A monolithic Lagrangian meshfree scheme for Fluid-Structure Interaction problems within the OTM framework, Comput Meth Appl Mech Eng (2018) · Zbl 1440.74124
[251] Peters, CD; van der Spuy, SJ; Els, DNJ; Kuhnert, J., Aerodynamic damping of an oscillating fan blade: Mesh-based and meshless fluid structure interaction analysis, J Fluids Struct (2018)
[252] Mao, S., Material point method and adaptive meshing applied to fluid-structure interaction (FSI) problems, (Proceedings of the fluids engineering division summer meeting, 55553 (2013), American Society of Mechanical Engineers), p. V01BT13A004
[253] Liu, GR., Mesh Free Methods Moving Beyond the Finite Element Method (2002), CRC Press
[254] Li, X-Y; Teng, S-H; Ungor, A., Point placement for meshless methods using sphere packing and advancing front methods, (Proceedings of the ICCES’00, 20 (2000), Los Angeles: Los Angeles USA), 25
[255] Liu, Y.; Nie, Y.; Zhang, W.; Wang, L., Node placement method by bubble simulation and its application, CMES - Comput Model Eng Sci (2010)
[256] Hardin, DP, Saff EB. Discretizing manifolds via minimum energy points, Notices Am Math Soc (2004) · Zbl 1095.49031
[257] Fornberg, B.; Flyer, N., Fast generation of 2-D node distributions for mesh-free PDE discretizations, Comput Math Appl (2015) · Zbl 1443.65413
[258] Shankar, V.; Kirby, RM; Fogelson, AL, Robust node generation for mesh-free discretizations on irregular domains and surfaces, SIAM J Sci Comput, 40, A2584-A2608 (2018) · Zbl 1393.68177
[259] Slak, J.; Kosec, G., On generation of node distributions for meshless PDE discretizations, SIAM Journal on Scientific Computing (2019) · Zbl 07123723
[260] Eghtesad, A.; Knezevic, M., A new approach to fluid-structure interaction within graphics hardware accelerated smooth particle hydrodynamics considering heterogeneous particle size distribution, Comput Part Mech, 5, 387-409 (2018)
[261] Castorrini, A.; Corsini, A.; Rispoli, F.; Takizawa, K.; Tezduyar, TE, A stabilized ALE method for computational fluid-structure interaction analysis of passive morphing in turbomachinery, Math Models Methods Appl Sci (2019) · Zbl 1425.76134
[262] Garelli L. Fluid Structure Interaction using an Arbitrary Lagrangian Eulerian Formulation 2011:178.
[263] Wick, T., Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coordinates with the deal.II library, Arch Numer Softw, 1 (2013)
[264] Wang, X.; Liu, WK., Extended immersed boundary method using FEM and RKPM, Comput Meth Appl Mech Eng (2004) · Zbl 1060.74676
[265] Zhang, Q.; Zhu, B., An integrated coupling framework for highly nonlinear fluid-structure problems, Comput Fluids, 60, 36-48 (2012) · Zbl 1365.76132
[266] Huang DZ, Avery P, Farhat C, Rabinovitch J, Derkevorkian A, Peterson LD. Modeling, simulation and validation of supersonic parachute inflation dynamics during mars landing, 2020. 10.2514/6.2020-0313.
[267] Vanella, M.; Posa, A.; Balaras, E., Adaptive mesh refinement for immersed boundary methods, J Fluids Eng Trans ASME (2014)
[268] Jansson, J.; Degirmenci, NC; Hoffman, J., Adaptive unified continuum FEM modeling of a 3D FSI benchmark problem, Int J Numer Methods Biomed Eng (2017)
[269] Chesshire, G.; Henshaw, WD., Composite overlapping meshes for the solution of partial differential equations, J Comput Phys (1990) · Zbl 0709.65090
[270] Hu, HH; Patankar, NA; Zhu, MY, Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique, J Comput Phys (2001) · Zbl 1047.76571
[271] Sarrate, J.; Huerta, A.; Donea, J., Arbitrary lagrangian-eulerian formulation for fluid-rigid body interaction, Comput Meth Appl Mech Eng (2001) · Zbl 0985.76055
[272] Clarke, DK; Salas, MD; Hassan, HA, Euler calculations for multielement airfoils using Cartesian grids, AIAA J (1986) · Zbl 0587.76095
[273] DeZeeuw, D.; Powell, KG., An adaptively refined cartesian mesh solver for the euler equations, J Comput Phys (1993) · Zbl 0766.76066
[274] Ye, T.; Mittal, R.; Udaykumar, HS; Shyy, W., An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries, J Comput Phys (1999) · Zbl 0957.76043
[275] Udaykumar, HS; Shyy, W.; Rao, MM, ELAFINT: A mixed Eulerian-Lagrangian method for fluid flows with complex and moving boundaries, Int J Numer Methods Fluids (1996), 10.1002/(SICI)1097-0363(19960430)22:8<691::AID-FLD371>3.0.CO;2-U · Zbl 0887.76059
[276] Huang, WX; Sung, HJ., An immersed boundary method for fluid-flexible structure interaction, Comput Meth Appl Mech Eng (2009)
[277] Kim, D.; Choi, H., Immersed boundary method for flow around an arbitrarily moving body, J Comput Phys (2006) · Zbl 1161.76520
[278] Le, DV; Khoo, BC; Lim, KM, An implicit-forcing immersed boundary method for simulating viscous flows in irregular domains, Comput Meth Appl Mech Eng (2008)
[279] Bungartz, H-J; iriam, Mehl M.; Schäfer, M., Fluid Structure Interaction II : Modelling, Simulation, Optimization (2010), Springer International Publishing
[280] Hermange C, Le Touzé D, Oger G, Hermange C, Oger G. Development of a coupling strategy between smoothed particle hydrodynamics and finite element method for violent fluid-structure interaction problems 2018. · Zbl 1411.76130
[281] Yang, L.; Li, S.; Hao, A.; Qin, H., Realtime two-way coupling of meshless fluids and nonlinear FEM, (Proceedings of the Eurographics Symposium on Geometry Processing, 31 (2012)), 2037-2046
[282] Zhang, LT; Gay, M., Immersed finite element method for fluid-structure interactions, J Fluids Struct, 23, 839-857 (2007)
[283] Wang, XS, From immersed boundary method to immersed continuum methods, Int J Multiscale Comput Eng (2006)
[284] Sheldon Wang, X., An iterative matrix-free method in implicit immersed boundary/continuum methods, Comput Struct (2007)
[285] de Boer, A.; van Zuijlen, AH; Bijl, H., Review of coupling methods for non-matching meshes, Comput Meth Appl Mech Eng (2007) · Zbl 1173.74485
[286] Smith, MJ; Hodges, DH; Cesnik, CES, Evaluation of computational algorithms suitable for fluid-structure interactions, J Aircraft (2000)
[287] Cebral, JR; Löhner, R., Conservative load projection and tracking for fluid-structure problems, AIAA J (1997) · Zbl 0895.73077
[288] Jaiman, RK; Jiao, X.; Geubelle, PH; Loth, E., Assessment of conservative load transfer for fluid-solid interface with non-matching meshes, Int J Numer Methods Eng (2005) · Zbl 1122.74544
[289] Jaiman, RK; Jiao, X.; Geubelle, PH; Loth, E., Conservative load transfer along curved fluid-solid interface with non-matching meshes, J Comput Phys (2006) · Zbl 1158.76405
[290] Takizawa, K.; Tezduyar, TE; Buscher, A.; Asada, S., Space-time interface-tracking with topology change (ST-TC), Comput Mech (2014) · Zbl 1311.74045
[291] Wick, T., Flapping and contact FSI computations with the fluid-solid interface-tracking/interface-capturing technique and mesh adaptivity, Comput Mech (2014) · Zbl 1309.74026
[292] Sawada, T., Interface-reproducing capturing (IRC) technique for fluid-structure interaction: methods and applications, Model Simulat Sci Eng Technol (2018)
[293] Belytschko, T.; Krongauz, Y.; Dolbow, J.; Gerlach, C., On the completeness of meshfree particle methods, Int J Numer Methods Eng, 43, 785-819 (1998), 10.1002/(SICI)1097-0207(19981115)43:5<785::AID-NME420>3.0.CO;2-9 · Zbl 0939.74076
[294] Belytschko, T.; Moës, N.; Usui, S.; Parimi, C., Arbitrary discontinuities in finite elements, Int J Numer Methods Eng (2001), 10.1002/1097-0207(20010210)50:4<993::AID-NME164>3.0.CO;2-M · Zbl 0981.74062
[295] Belytschko T, Ventura G, Xu J. New methods for discontinuity and crack modeling in EFG, 2003. doi:10.1007/978-3-642-56103-0_3. · Zbl 1036.74049
[296] Organ, D.; Fleming, M.; Terry, T.; Belytschko, T., Continuous meshless approximations for nonconvex bodies by diffraction and transparency, Comput Mech (1996) · Zbl 0864.73076
[297] Afonso, F.; Vale, J.; Oliveira, É.; Lau, F.; Suleman, A., A review on non-linear aeroelasticity of high aspect-ratio wings, Prog Aerosp Sci, 89, 40-57 (2017)
[298] Richter T. Fluid-structure interactions models, analysis and finite elements. 2017. 10.1007/978-3-319-63970-3. · Zbl 1374.76001
[299] Heil, M.; Hazel, AL; Boyle, J., Solvers for large-displacement fluid-structure interaction problems: Segregated versus monolithic approaches, Comput Mech, 43, 91-101 (2008) · Zbl 1309.76126
[300] Yang, T.; Wei, M.; Jia, K.; Chen, J., A monolithic algorithm for the flow simulation of flexible flapping wings, Int J Micro Air Vehicles, 11 (2019), 175682931984612
[301] Bazilevs Y, Takizawa K. Advances in computational fluid-structure interaction and flow simulation. 2018. 10.1007/978-3-319-96469-0. · Zbl 1390.00135
[302] He, T., A CBS-based partitioned semi-implicit coupling algorithm for fluid-structure interaction using MCIBC method, Comput Meth Appl Mech Eng, 298, 252-278 (2016) · Zbl 1423.76338
[303] Mitsume, N.; Yoshimura, S.; Murotani, K.; Yamada, T., MPS-FEM partitioned coupling approach for fluid-structure interaction with free surface flow, Int J Comput Methods, 11, Article 1350101 pp. (2014) · Zbl 1359.74426
[304] De Rosis, A.; Falcucci, G.; Ubertini, S.; Ubertini, F., A coupled lattice Boltzmann-finite element approach for two-dimensional fluid-structure interaction, Comput Fluids, 86, 558-568 (2013) · Zbl 1290.76120
[305] Farhat, C.; van der Zee, KG; Geuzaine, P., Provably second-order time-accurate loosely-coupled solution algorithms for transient nonlinear computational aeroelasticity, Comput Meth Appl Mech Eng, 195, 1973-2001 (2006) · Zbl 1178.76259
[306] Li, K.; Huang, QB; Wang, JL; Lin, LG, An improved localized radial basis function meshless method for computational aeroacoustics, Eng Anal Boundary Elem (2011) · Zbl 1259.76050
[307] Hou, TY; Shi, Z., An efficient semi-implicit immersed boundary method for the Navier-Stokes equations, J Comput Phys (2008)
[308] Hieber, SE; Koumoutsakos, P., An immersed boundary method for smoothed particle hydrodynamics of self-propelled swimmers, J Comput Phys (2008) · Zbl 1227.76052
[309] Bhardwaj, R.; Mittal, R., Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation, AIAA J (2012)
[310] Wang H, Belytschko T. Fluid-structure interaction by the discontinuous-Galerkin method for large deformations 2009:30-49. 10.1002/nme. · Zbl 1195.74204
[311] Wright, GB; Fornberg, B., Scattered node compact finite difference-type formulas generated from radial basis functions, J Comput Phys (2006) · Zbl 1089.65020
[312] Hamed Meraji, S.; Ghaheri, A.; Malekzadeh, P., An efficient algorithm based on the differential quadrature method for solving Navier-Stokes equations, Int J Numer Methods Fluids (2013) · Zbl 1430.76124
[313] Bollig, EF; Flyer, N.; Erlebacher, G., Solution to PDEs using radial basis function finite-differences (RBF-FD) on multiple GPUs, J Comput Phys (2012)
[314] Fries, TP; Matthies, HG., A stabilized and coupled meshfree/meshbased method for the incompressible Navier-Stokes equations-Part I: Stabilization, Comput Meth Appl Mech Eng (2006) · Zbl 1178.76274
[315] Fries, TP; Matthies, HG., A stabilized and coupled meshfree/meshbased method for the incompressible Navier-Stokes equations-Part II: Coupling, Comput Meth Appl Mech Eng (2006) · Zbl 1178.76273
[316] Fornberg, B.; Lehto, E., Stabilization of RBF-generated finite difference methods for convective PDEs, J Comput Phys, 230, 2270-2285 (2011) · Zbl 1210.65154
[317] Shen, Q., Local RBF-based differential quadrature collocation method for the boundary layer problems, Eng Anal Boundary Elem (2010) · Zbl 1244.65118
[318] Chan, YL; Shen, LH; Wu, CT; Young, DL, A novel upwind-based local radial basis function differential quadrature method for convection-dominated flows, Comput Fluids (2014) · Zbl 1391.76529
[319] Javed, A.; Djidjeli, K.; Jamil, M.; Arif, I., A stabilized RBF finite difference method for convection dominated flows over meshfree nodes, (Proceedings of the AIAA aerospace sciences meeting (2018))
[320] Lefrançois, E.; Boufflet, JP, An introduction to fluid-structure interaction: application to the piston problem, SIAM Rev (2010) · Zbl 1323.74027
[321] Abaqus analysis User’s guide (6.14), Abaqus, 612 (2013)
[322] ANSYS fluent Tutorial Guide 18, ANSYS Fluent Tutorial Guide (2018)
[323] Kumar, P.; Yang, Q.; Jones, V.; McCue-Weil, L., Coupled SPH-FVM simulation within the OpenFOAM framework, Proc IUTAM (2015)
[324] Xing, JT, Fluid-solid interaction dynamics, theory, variational principles, numerical methods, and applications, Academic Press & Higher Education Press (2019), ISBN:978-0-12-819352-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.