×

Tractor geometry of asymptotically flat spacetimes. (English) Zbl 1501.83004

Summary: In a recent work it was shown that conformal Carroll geometries are canonically equipped with a null-tractor bundle generalizing the tractor bundle of conformal geometry. We here show that in the case of the conformal boundary of an asymptotically flat spacetime of any dimension \(d\ge 3\), this null-tractor bundle over null infinity can be canonically derived from the interior spacetime geometry. As was previously discussed, compatible normal connections on the null-tractor bundle are not unique: We prove that they are in fact in one-to-one correspondence with the germ of the asymptotically flat spacetimes to leading order. In dimension \(d=3\) the tractor connection invariantly encodes a choice of mass and angular momentum aspect, in dimension \(d\ge 4\) a choice of asymptotic shear. In dimension \(d=4\) the presence of tractor curvature correspond to gravitational radiation. Even thought these results are by construction geometrical and coordinate invariant, we give explicit expressions in BMS coordinates for concreteness.

MSC:

83C30 Asymptotic procedures (radiation, news functions, \(\mathcal{H} \)-spaces, etc.) in general relativity and gravitational theory
53C18 Conformal structures on manifolds
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
83C35 Gravitational waves
53Z05 Applications of differential geometry to physics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Geroch, R.: Asymptotic Structure of Space-Time. Asymptotic Structure of Space-Time. Boston: Springer. pp. 1-105 (1977). doi:10.1007/978-1-4684-2343-3_1
[2] Bailey, T.; Eastwood, M.; Gover, A., Thomas’s structure bundle for conformal, projective and related structures, Rocky Mount. J. Math., 24, 4, 1191-1217 (1994) · Zbl 0828.53012 · doi:10.1216/RMJM/1181072333
[3] Curry, S.N., Gover, A.R.: An introduction to conformal geometry and tractor calculus, with a view to applications in general relativity. asymptotic analysis in general relativity. In: Daudé T, äfner DH, Nicolas J-P (eds) London Mathematical Society Lecture Note Series. Cambridge University Press. pp. 86-170 (2018). doi:10.1017/9781108186612.003 · Zbl 1416.83014
[4] Levy-Leblond, J.-M.: Annales de l’I.H.P. Physique théorique. Une nouvelle limite non-relativiste du groupe de Poincaré 3(1), 1-12 (1965) · Zbl 0143.22601
[5] Duval, C.; Gibbons, GW; Horvathy, PA; Zhang, PM, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. (2014) · Zbl 1295.83006 · doi:10.1088/0264-9381/31/8/085016
[6] Bergshoeff, E.; Gomis, J.; Longhi, G., Dynamics of carroll particles, Class. Quant. Grav. (2014) · Zbl 1303.83034 · doi:10.1088/0264-9381/31/20/205009
[7] Duval, C.; Gibbons, GW; Horvathy, PA, Conformal carroll groups and BMS symmetry, Class. Quant. Grav. (2014) · Zbl 1291.83084 · doi:10.1088/0264-9381/31/9/092001
[8] Duval, C.; Gibbons, GW; Horvathy, PA, Conformal carroll groups, J. Phys. A: Math. Theor. (2014) · Zbl 1297.83028 · doi:10.1088/1751-8113/47/33/335204
[9] Bergshoeff, E., Carroll versus Galilei gravity, J. High Energy Phys., 2017, 3, 165 (2017) · Zbl 1377.83073 · doi:10.1007/JHEP03(2017)165
[10] de Boer, J., et al.: Perfect fluids. SciPost Phys. 5(1):003 (2018). doi:10.21468/SciPostPhys.5.1.003
[11] Morand, K., Embedding Galilean and Carrollian geometries. I. Gravitational waves, J. Math. Phys. (2020) · Zbl 1455.83004 · doi:10.1063/1.5130907
[12] Ciambelli, L.; Marteau, C., Carrollian conservation laws and Ricci-flat gravity, Class. Quant. Grav. (2019) · Zbl 1476.83124 · doi:10.1088/1361-6382/ab0d37
[13] Ciambelli, L.; Leigh, RG; Marteau, C.; Petropoulos, PM, Carroll structures, null geometry, and conformal isometries, Phys. Rev. D. (2019) · doi:10.1103/PhysRevD.100.046010
[14] Donnay, L.; Marteau, C., Carrollian physics at the black hole horizon, Class. Quant. Grav. (2019) · Zbl 1477.83050 · doi:10.1088/1361-6382/ab2fd5
[15] Palomo, FJ, Lightlike manifolds and cartan geometries, Anal. Math. Phys., 11, 3, 112 (2021) · Zbl 1479.53042 · doi:10.1007/s13324-021-00547-8
[16] Penrose, R.: The geometry of impulsive gravitational waves. In: O’Raifeartaigh, L. (ed.), General Relativity, Papers in Honour of J.L. Synge. Clarendon Press, Oxford, pp. 101-15 (1972) · Zbl 0274.53050
[17] Gourgoulhon, E.; Jaramillo, JL, A 3+1 Perspective on Null Hypersurfaces and Isolated Horizons, Phys. Rep., 423, 4, 159-294 (2006) · doi:10.1016/j.physrep.2005.10.005
[18] Nurowski, P.; Robinson, DC, Intrinsic geometry of a null hypersurface, Class. Quant. Grav., 17, 19, 4065-4084 (2000) · Zbl 1085.53504 · doi:10.1088/0264-9381/17/19/308
[19] Galloway, G.J.: Null geometry and the Einstein equations. In: Chruściel, P.T., Friedrich, H. (eds) The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Basel: Birkhäuser, pp. 379-400 (2004). doi:10.1007/978-3-0348-7953-8_11 · Zbl 1118.83004
[20] Bondi, H., Van der Burg, M.G.J., Metzner, A.W.K.: Gravitational Waves in General Relativity, VII. Waves from axi-symmetric isolated system. in: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 269 (no. 1336), pp. 21-52 (1962). doi:10.1098/rspa.1962.0161 · Zbl 0106.41903
[21] Sachs, R. K.: Gravitational Waves in General Relativity VIII. Waves in asymptotically flat space-time. In: Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences. vol. 270, no. 1340, pp. 103-126 (1962). doi:10.1098/rspa.1962.0206 · Zbl 0101.43605
[22] Sachs, RK, Asymptotic symmetries in gravitational theory, Phys. Rev., 128, 6, 2851-2864 (1962) · Zbl 0114.21202 · doi:10.1103/PhysRev.128.2851
[23] Newman, E.; Penrose, R., An approach to gravitational radiation by a method of spin coefficients, J. Math. Phys., 3, 3, 566-578 (1962) · Zbl 0108.40905 · doi:10.1063/1.1724257
[24] Ashtekar, A., Geometry and physics of null infinity, Surv. Differ. Geom., 20, 1, 99-122 (2015) · Zbl 1339.83002 · doi:10.4310/SDG.2015.v20.n1.a5
[25] Goldberg, JN; Sachs, RK, A theorem on Petrov types, Acta Physica Polonica, 22, 13-23 (1962) · Zbl 0113.44807 · doi:10.1007/s10714-008-0722-5
[26] Adamo, T.M., Newman, E.T., Kozameh, C.: Living reviews in relativity. Null geodesic congruences, asymptotically-flat spacetimes and their physical interpretation, vol 15, no. 1, (2012). doi:10.12942/lrr-2012-1 · Zbl 1316.83002
[27] Herfray, Y., Asymptotic shear and the intrinsic conformal geometry of null-infinity, J. Math. Phys., 61, 7, 072502 (2020) · Zbl 1455.83011 · doi:10.1063/5.0003616
[28] Gover, AR, Almost Einstein and Poincaré-Einstein manifolds in Riemannian signature, J. Geom. Phys., 60, 2, 182-204 (2010) · Zbl 1194.53038 · doi:10.1016/j.geomphys.2009.09.016
[29] Cartan, E.: Les Espaces á Connection Conforme. Annales de la Société Polonaise de Mathématique T. 2 (1923) (1923)
[30] Thomas, T.Y.: On conformal geometry. In: Proceedings of the National Academy of Sciences. vol. 12, no. 5, pp. 352-359, (1926). doi:10.1073/pnas.12.5.352. (pmid: 16587094) · JFM 52.0769.13
[31] Penrose, R., Asymptotic properties of fields and space-times, Phys. Rev. Lett., 10, 2, 66-68 (1963) · doi:10.1103/PhysRevLett.10.66
[32] Penrose, R.: Conformal treatment of infinity. Lectures, Les Houches. Summer School of Theoret. Phys. Vol. Relativité, Groupes et Topologie. Univ. Grenoble: Gordon and Breach, New York., pp. 563-584 (1964). doi:10.1007/s10714-010-1110-5 · Zbl 0166.24001
[33] Penrose, R.: Zero Rest-Mass Fields Including Gravitation: Asymptotic Behaviour. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 284(no. 1397), pp. 159-203 (23, 1965). doi:10.1098/rspa.1965.0058 · Zbl 0129.41202
[34] Newman, ET, Heaven and its properties, Gen. Relativ. Gravit., 7, 1, 107-111 (1976) · doi:10.1007/BF00762018
[35] Adamo, TM; Newman, ET, The generalized good cut equation, Class. Quant. Grav. (2010) · Zbl 1208.83021 · doi:10.1088/0264-9381/27/24/245004
[36] Penrose, R.; MacCallum, MAH, Twistor theory: an approach to the quantisation of fields and space-time, Phys. Rep., 6, 4, 241-315 (1973) · doi:10.1016/0370-1573(73)90008-2
[37] Penrose, R., Nonlinear gravitons and curved twistor theory, Gen. Relativ. Gravit., 7, 1, 31-52 (1976) · Zbl 0354.53025 · doi:10.1007/BF00762011
[38] Atiyah, M., Dunajski, M., Mason, L.: Twistor theory at fifty: from contour integrals to twistor strings. In: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473(2206), p. 20170530 (2017). doi:10.1098/rspa.2017.0530 · Zbl 1404.81004
[39] Friedrich, H., Cauchy problems for the conformal vacuum field equations in general relativity, Commun. Math. Phys., 91, 4, 445-472 (1983) · Zbl 0555.35116 · doi:10.1007/BF01206015
[40] Frauendiener, J.; Sparling, GAJ, Local twistors and the conformal field equations, J. Math. Phys., 41, 1, 437-443 (1999) · Zbl 1022.53042 · doi:10.1063/1.533139
[41] Frauendiener, J.: Living Reviews in Relativity. Conformal Infinity 7(1), 1, (2004). doi:10.12942/lrr-2004-1 · Zbl 1118.83306
[42] Friedrich, H., Peeling or not peeling-is that the question?, Class. Quant. Grav. (2018) · Zbl 1409.83043 · doi:10.1088/1361-6382/aaafdb
[43] Friedrich, H., Twistor connection and normal conformal cartan connection, Gen. Relativ. Gravit., 8, 5, 303-312 (1977) · Zbl 0465.53039 · doi:10.1007/BF00771141
[44] Penrose, R., Twistor quantisation and curved space-time, Int. J. Theor. Phys., 1, 1, 61-99 (1968) · doi:10.1007/BF00668831
[45] Dighton, K., An introduction to the theory of local twistors, Int. J. Theor. Phys., 11, 1, 31-43 (1974) · doi:10.1007/BF01807935
[46] Ko, M.; Newman, ET; Penrose, R., The Kähler structure of asymptotic twistor space, J. Math. Phys., 18, 1, 58-64 (1977) · Zbl 0357.53013 · doi:10.1063/1.523151
[47] Mason, L.: Twistors in curved space-time. University of Oxford. (1985)
[48] Mason, L., The Kähler structure on the asymptotic twistor space, Twistor Newsletter., 22, 26 (1986)
[49] Branson, T.; Gover, AR, Conformally invariant non-local operators, Pac. J. Math., 201, 1, 19-60 (2001) · Zbl 1052.58026 · doi:10.2140/pjm.2001.201.19
[50] Gover, A.R.: Conformal Dirichlet-Neumann Maps and Poincaré-Einstein Manifolds. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications 3, 100 (2007). doi:10.3842/SIGMA.2007.100 · Zbl 1145.53018
[51] Vyatkin, Y.: Manufacturing Conformal Invariants of Hypersurfaces. PhD thesis. University of Auckland, (2013)
[52] Gover, AR; Waldron, A., Boundary calculus for conformally compact manifolds, Indiana Univ. Math. J., 63, 1, 119-163 (2014) · Zbl 1310.53060 · doi:10.1512/iumj.2014.63.5057
[53] Gover, A.R., Latini, E., Waldron, A.: Poincare-Einstein Holography for Forms via Conformal Geometry in the Bulk. Vol. 235-1106. Memoirs of the AMS. American Mathematical Soc. 9, 108 pp (2015) · Zbl 1326.53057
[54] Calderbank, D.: Möbius Structures and Two Dimensional Einstein Weyl Geometry. Journal für die reine und angewandte Mathematik (Crelles Journal), vol. 1998(no. 504), pp. 37-53 (2006). doi:10.1515/crll.1998.111 · Zbl 0909.53029
[55] Burstall, F., Calderbank, D.: Conformal Submanifold Geometry I-III. 29, (2010). arXiv:1006.5700
[56] Compére, G.; Fiorucci, A.; Ruzziconi, R., The Lambda-BMS 4 Group of dS 4 and new boundary conditions for AdS 4, Class. Quant. Grav., 36, 19, 195017 (2019) · Zbl 1478.83048 · doi:10.1088/1361-6382/ab3d4b
[57] Compére, G.; Fiorucci, A.; Ruzziconi, R., The lambda-BMS4 charge algebra, J. High Energy Phys., 2020, 10, 205 (2020) · Zbl 1456.81215 · doi:10.1007/JHEP10(2020)205
[58] Fiorucci, A.; Ruzziconi, R., Charge Algebra in Al(A)dSn spacetimes, J. High Energy Phys., 2021, 5, 210 (2021) · Zbl 1466.81032 · doi:10.1007/JHEP05(2021)210
[59] Ashtekar, A., Radiative degrees of freedom of the gravitational field in exact general relativity, J. Math. Phys., 22, 12, 2885-2895 (1981) · doi:10.1063/1.525169
[60] Ashtekar, A.; Magnon-Ashtekar, A., On the symplectic structure of general relativity, Commun. Math. Phys., 86, 1, 55-68 (1982) · Zbl 0504.53049 · doi:10.1007/BF01205661
[61] Ashtekar, A., Streubel, M.: Symplectic geometry of radiative modes and conserved quantities at null infinity. In: Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 376(1767), 585-607 (1981). doi:10.1098/rspa.1981.0109
[62] Ashtekar, A.: Asymptotic Quantization: 1984 Naples Lectures. Bilbiopolis (1987) 107 P. (1987) · Zbl 0621.53064
[63] Ashtekar, A.; Campiglia, M.; Laddha, A., Null infinity, the BMS group and infrared issues, Gen. Relativ. Gravit., 50, 11, 140 (2018) · Zbl 1403.83012 · doi:10.1007/s10714-018-2464-3
[64] Nguyen, K.; Salzer, J., The effective action of superrotation modes, J. High Energy Phys., 2021, 2, 108 (2021) · Zbl 1460.83008 · doi:10.1007/JHEP02(2021)108
[65] Herfray, Y.; Scarinci, C., Einstein gravity as a gauge theory for the conformal group, Class. Quant. Grav. (2022) · Zbl 1484.83002 · doi:10.1088/1361-6382/ac3e53
[66] Geroch, R.; Horowtiz, GT, Asymptotically simple does not imply asymptotically Minkowskian, Phys. Rev. Lett., 40, 4, 203-206 (1978) · doi:10.1103/PhysRevLett.40.203
[67] Gover, A.R.: Almost conformally Einstein manifolds and obstructions. In: Proceedings of the 9th International Conference on Differential Geometry and its Applications. pp. 247-260 (2005) · Zbl 1121.53032
[68] Chruściel, P.T., MacCallum, M.A.H., Singleton, D.B.: Gravitational Waves in General Relativity XIV. Bondi Expansions and the ‘Polyhomogeneity’ of scrI. Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences 350(1692), 113-141 (1995). doi:10.1098/rsta.1995.0004 · Zbl 0829.53065
[69] Kroon, JAV, Conserved quantities for polyhomogeneous spacetimes, Class. Quant. Grav., 15, 8, 2479-2491 (1998) · Zbl 0942.83028 · doi:10.1088/0264-9381/15/8/023
[70] Godazgar, M.; Long, G., BMS charges in polyhomogeneous spacetimes, Phys. Rev. D. (2020) · doi:10.1103/PhysRevD.102.064036
[71] Tafel, J.; Pukas, S., Comparison of the bondi-sachs and penrose approaches to asymptotic flatness, Class. Quant. Grav., 17, 6, 1559-1570 (2000) · Zbl 0957.83020 · doi:10.1088/0264-9381/17/6/316
[72] Mädler, T., Winicour, J.: Bondi-sachs formalism. Scholarpedia 11(12), 33528, (2016). doi:10.4249/scholarpedia.33528
[73] Barnich, G.; Troessaert, C., Finite BMS transformations, J. High Energy Phys., 2016, 3, 167 (2016) · Zbl 1388.83514 · doi:10.1007/JHEP03(2016)167
[74] Hollands, S.; Ishibashi, A.; Wald, RM, BMS supertranslations and memory in four and higher dimensions, Class. Quant. Grav. (2017) · Zbl 1373.83033 · doi:10.1088/1361-6382/aa777a
[75] Barnich, G.; Troessaert, C., Aspects of the BMS/CFT Correspondence, J. High Energy Phys., 2010, 5, 62 (2010) · Zbl 1287.83043 · doi:10.1007/JHEP05(2010)062
[76] Tanabe, K.; Kinoshita, S.; Shiromizu, T., Asymptotic flatness at null infinity in arbitrary dimensions, Phys. Rev. D (2011) · doi:10.1103/PhysRevD.84.044055
[77] Kapec, D.; Lysov, V.; Pasterski, S.; Strominger, A., Higher-dimensional supertranslations and Weinberg’s soft graviton theorem, Ann. Math. Sci. Appl., 2, 1, 69-94 (2017) · Zbl 1382.83087 · doi:10.4310/AMSA.2017.v2.n1.a2
[78] Campoleoni, A.; Francia, D.; Heissenberg, C., Asymptotic charges at null infinity in any dimension, Universe, 4, 3, 47 (2018) · doi:10.3390/universe4030047
[79] Satishchandran, G.; Wald, RM, Asymptotic behavior of massless fields and the memory effect, Phys. Rev. D. (2019) · doi:10.1103/PhysRevD.99.084007
[80] Campoleoni, A.; Francia, D.; Heissenberg, C., On asymptotic symmetries in higher dimensions for any spin, J. High Energy Phys. (2020) · Zbl 1457.81118 · doi:10.1007/JHEP12(2020)129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.