×

Modeling the dynamics of Wolbachia-infected and uninfected Aedes aegypti populations by delay differential equations. (English) Zbl 1469.92103

Summary: Starting from an age structured partial differential model, constructed taking into account the mosquito life cycle and the main features of the Wolbachia-infection, we derived a delay differential model using the method of characteristics, to study the colonization and persistence of the Wolbachia-transinfected Aedes aegypti mosquito in an environment where the uninfected wild mosquito population is already established. Under some conditions, the model can be reduced to a Nicholson-type delay differential system; here, the delay represents the duration of mosquito immature phase that comprises egg, larva and pupa. In addition to mortality and oviposition rates characteristic of the life cycle of the mosquito, other biological features such as cytoplasmic incompatibility, bacterial inheritance, and deviation on sex ratio are considered in the model. The model presents three equilibriums: the extinction of both populations, the extinction of Wolbachia-infected population and persistence of uninfected one, and the coexistence. The conditions of existence for each equilibrium are obtained analytically and have been interpreted biologically. It is shown that the increase of the delay can promote, through Hopf bifurcation, stability switch towards instability for the nonzero equilibriums. Overall, when the delay increases and crosses predetermined thresholds, the populations go to extinction.

MSC:

92D30 Epidemiology
35Q92 PDEs in connection with biology, chemistry and other natural sciences
34K18 Bifurcation theory of functional-differential equations
34K20 Stability theory of functional-differential equations
92D25 Population dynamics (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] T.H. Ant, C.S. Herd, V. Geoghegan, A.A. Hoffmann and S.P. Sinkins, The wolbachia strain wau provides highly efficient virus transmission blocking in aedes aegypti. PLoS Pathogens 14 (2018) e1006815. · doi:10.1371/journal.ppat.1006815
[2] Z.A. Awrahman, F. Champion de Crespigny and N. Wedell, The impact of wolbachia, male age and mating history on cytoplasmic incompatibility and sperm transfer in drosophila simulans. J. Evolut. Biol. 27 (2014) 1-10. · doi:10.1111/jeb.12270
[3] J.K. Axford, P.A. Ross, H.L. Yeap, A.G. Callahan and A.A. Hoffmann, Fitness of walbb wolbachia infection in aedes aegypti: parameter estimates in an outcrossed background and potential for population invasion. Am. J. Trop. Med. Hygiene 94 (2016) 507-516. · doi:10.4269/ajtmh.15-0608
[4] E. Beretta and Y. Kuang, Geometric stability switch criteria in delay differential systems with delay dependent parameters. SIAM J. Math. Anal. 33 (2002) 1144-1165. · Zbl 1013.92034 · doi:10.1137/S0036141000376086
[5] L. Berezansky, E. Braverman and L. Idels, Nicholson’s blowflies differential equations revisited: Main results and open problems. Appl. Math. Model. 34 (2010) 1405-1417. · Zbl 1193.34149 · doi:10.1016/j.apm.2009.08.027
[6] L. Berezansky, L. Idels and L. Troib, Global dynamics of nicholson-type delay systems with applications. Nonlinear Anal.: Real World Appl. 12 (2011) 436-445. · Zbl 1208.34120 · doi:10.1016/j.nonrwa.2010.06.028
[7] P.-A. Bliman, M.S. Aronna, F.C. Coelho and M.A. H.B. da Silva, Ensuring successful introduction of wolbachia in natural populations of aedes aegypti by means of feedback control. J. Math. Biol. 76 (2018) 1269-1300. · Zbl 1392.92096 · doi:10.1007/s00285-017-1174-x
[8] P.-A. Bliman, D. Cardona-Salgado, Y. Dumont and O. Vasilieva, Implementation of control strategies for sterile insect techniques. Math. Biosci. 314 (2019) 43-60. · Zbl 1425.92126 · doi:10.1016/j.mbs.2019.06.002
[9] S.R. Bordenstein and S.R. Bordenstein, Temperature affects the tripartite interactions between bacteriophage wo, wolbachia, and cytoplasmic incompatibility. PLoS ONE 6 (2011) e29106. · doi:10.1371/journal.pone.0029106
[10] E. Braverman and D. Kinzebulatov, Nicholson’s blowflies equation with a distributed delay. Can. Appl. Math. Quart. 14 (2006) 107-128. · Zbl 1146.34056
[11] R.A. Costello, Effects of environmental and physiological factors on the acoustic behavior of Aedes aegypti (L.) (Diptera: Culicidae). PhD thesis, University of Manitoba, Canada (1974).
[12] C. Dye, Models for the population dynamics of the yellow fever mosquito, Aedes aegypti. J. Animal Ecol. 53 (1984) 247-268. · doi:10.2307/4355
[13] J.Z. Farkas and P. Hinow, Structured and unstructured continuous models for wolbachia infections. Bull. Math. Biol. 72 (2010) 2067-2088. · Zbl 1201.92044 · doi:10.1007/s11538-010-9528-1
[14] J.Z. Farkas, S.A. Gourley, R. Liu and A.A. Yakubu, Modelling wolbachia infection in a sex-structured mosquito population carrying west nile virus. J. Math. Biol. 75 (2017). · Zbl 1387.92082 · doi:10.1007/s00285-017-1096-7
[15] C.P. Ferreira, Aedes aegypti and wolbachia interaction: population persistence in a changing environment. Theor. Ecol. (2019).
[16] C.P. Ferreira, H.M. Yang and L. Esteva, Assessing the suitability of sterile insect technique applied to Aedes aegypti. J. Biol. Syst. 16 (2008) 565-577. · doi:10.1142/S0218339008002691
[17] D.J. Gubler, The global emergence/resurgence of arboviral diseases as public health problems. Arch. Med. Res. 33 (2002) 330-342. · doi:10.1016/S0188-4409(02)00378-8
[18] N.D. Hayes, Roots of the transcendental equation associated with a certain difference-differential equation. J. London Math. Soc. (1950) 226-232. · Zbl 0038.24102 · doi:10.1112/jlms/s1-25.3.226
[19] S.P. Hernandez, A.M. Loaiza and C.A.A. Minoli, A reaction-diffusion model for controlling the Aedes aegypti with wolbachia. Int. J. Contemp. Math. Sci. 11 (2016) 385-394. · doi:10.12988/ijcms.2016.511713
[20] A.A. Hoffmann, B.L. Montgomery, J. Popovici, I. Iturbe-Ormaetxe, P.H. Johnson, F. Muzzi, M. Greenfield, M. Durkan, Y.S. Leonga, Y. Dong, H. Cook, J. Axford, A.G. Callahan, N. Kenny, C. Omodei, E.A. McGraw, P.A. Ryan, S.A. Ritchie, M. Turelli and S.L. O’Neill, Successful establishment of wolbachia in aedes populations to suppress dengue transmission. Nature 476 (2011) 454-457. · doi:10.1038/nature10356
[21] M. Huang, M.X. Tang and J.S. Yu, Wolbachia infection dynamics by reaction-diffusion equations. Sci. China Math. 58 (2015) 77-96. · Zbl 1337.35156 · doi:10.1007/s11425-014-4934-8
[22] M. Huang, J. Luo, L. Hu, B. Zheng and J. Yu, Assessing the efficiency of wolbachia driven aedes mosquito suppression by delay differential equations. J. Theor. Biol. 440 (2018). · Zbl 1400.92490 · doi:10.1016/j.jtbi.2017.12.012
[23] M.G. Huang, M.X. Tang, J.S. Yu and B. Zheng, The impact of mating competitiveness and incomplete cytoplasmic incompatibility on wolbachia-driven mosquito population suppression. Math. Biosci. Eng. 16 (2019) 4741-4757. · Zbl 1497.92357 · doi:10.3934/mbe.2019238
[24] H. Hughes and N. Britton, Modelling the use of wolbachia to control dengue fever transmission. Bull. Math. Biol. 75 (2013). · Zbl 1273.92034 · doi:10.1007/s11538-013-9835-4
[25] L. Idels and M Kipnis, Stability criteria for a nonlinear nonautonomous system with delays. Appl. Math. Model. 33 (2009) 2293-2297. · Zbl 1185.74043 · doi:10.1016/j.apm.2008.06.005
[26] S. Lunel and J. Hale, Introduction to functional differential equations. In Vol. 99 of Applied Mathematical Sciences. Springer-Verlag (1993). · Zbl 0787.34002
[27] M. Keeling, F.M. Jiggins and J.M. Read, The invasion and coexistence of competing wolbachia strains. Heredity 91 (2003) 382-388. · doi:10.1038/sj.hdy.6800343
[28] J.G. King, C. Souto-Maior, L.M. Sartori, R.M. de Freitas and M. Gomes, Variation in wolbachia effects on aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nat. Commun. 9 (2018).
[29] X. Ling, A.M. Carrie, T. Panpim and M.H. James, Two-sex mosquito model for the persistence of wolbachia. J. Biol. Dyn. 11 (2017) 216-237. · Zbl 1447.92493 · doi:10.1080/17513758.2016.1229051
[30] C.J. McMeniman, R.V. Lane, B.N. Cass, A.W.C. Fong, M. Sidhu, Y.-F. Wang and S.L. O’Neill, Stable introduction of a life-shortening wolbachia infection into the mosquito Aedes aegypti. Science 323 (2009) 141-144. · doi:10.1126/science.1165326
[31] M. Ndii, R. Hickson and G. Mercer, Modelling the introduction of wolbachia into Aedes aegypti mosquitoes to reduce dengue transmission. ANZIAM J. 53 (2012) 213-227. · Zbl 1316.93104
[32] Z. Qu, L. Xue and J. Hyman, Modeling the transmission of wolbachia in mosquitoes for controlling mosquito-borne diseases. SIAM J. Appl. Math. 78 (2018) 826-852. · Zbl 1392.92107 · doi:10.1137/17M1130800
[33] M. Rafikov, E. Rafikova and H.M. Yang, Optimization of the Aedes aegypti control strategies for integrated vector management. J. Appl. Math. 2015 (2015) 918194. · doi:10.1155/2015/918194
[34] J.M. Reinhold, C.R. Lazzari and C. Lahondère, Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: a review. Insects 9 (2018) 158. · doi:10.3390/insects9040158
[35] P.A. Ross, I. Wiwatanaratanabutr, J.K. Axford, V.L. White, N.M. Endersby-Harshman and A.A. Hoffmann, Wolbachia infections in aedes aegypti differ markedly in their response to cyclical heatstress (2017).
[36] I.E. Leonard T. Hillen and H. Van Roessel Partial Differential Equations: Theory and Completely Solved Problems. Wiley (2012). · Zbl 1280.35001
[37] Z. Veneti, M.E. Clark, T.L. Karr, C. Savakis and K. Bourtzis, Heads or tails: Host-parasite interactions in the drosophila-wolbachia system. Appl. Environ. Microbiol. 70 (2004) 5366-5372. · doi:10.1128/AEM.70.9.5366-5372.2004
[38] P.F. Viana-Medeiros, D.F. Bellinato, A.J. Martins and D. Valle, Insecticide resistance, associated mechanisms and fitness aspects in two Brazilian Stegomyia aegypti (= Aedes aegypti) populations. Med. Veterin. Entomol. 31 (2017) 340-350. · doi:10.1111/mve.12241
[39] T. Walker, P.H. Johnson, L.A. Moreira, I. Iturbe-Ormaetxe, F.D. Frentiu, C.J. McMeniman, Y.S. Leong, Y. Dong, J. Axford, P. Kriesner, A.L. Lloyd, S.A. Ritchie, S.L. O’Neill and A.A. Hoffmann, The WMEL wolbachia strain blocks dengue and invades caged Aedes aegypti populations. Nature 475 (2011) 450-453. · doi:10.1038/nature10355
[40] Z. Xi, C.C. Khoo and S.L. Dobson, Wolbachia establishment and invasion in an Aedes aegypti laboratory population. Science 310 (2005) 326-328. · doi:10.1126/science.1117607
[41] H.M. Yang and C.P. Ferreira, Assessing the effects of vector control on dengue transmission. Appl. Math. Comput. 198 (2008) 401-413. · Zbl 1133.92015
[42] H.M. Yang, M.L. Macoris, K.C. Galvani, M.T. Andrighetti and D.M. Wanderley, Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol. Infection 137 (2009) 1188-1202. · doi:10.1017/S0950268809002040
[43] H.L. Yeap, P. Mee, T. Walker, A.R. Weeks, S.L. O’Neill, P. Johnson, S.A. Ritchie, K.M. Richardson, C. Noteg, N.M. Endersby and A.A. Hoffmann, Dynamics of the ‘popcorn’ wolbachia infection in outbred Aedes aegypti informs prospects for mosquito vector control. Genetics 187 (2011) 583-595. · doi:10.1534/genetics.110.122390
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.