×

Malaria modeling and optimal control using sterile insect technique and insecticide-treated net. (English) Zbl 1489.92143

Summary: We investigate a malaria transmission model with SEIR (susceptible-exposed-infected-recovered) classes for the human population, SEI (susceptible-exposed-infected) classes for the wild mosquitoes and an additional class for the sterile mosquitoes. The basic reproduction number of the disease transmission is obtained, and a release threshold of the sterile mosquitoes is provided. We formulate an optimal control problem in which the goal is to minimize both the infected human populations and the cost to implement two control strategies: the release of sterile mosquitoes and the usage of insecticide-treated nets to reduce the malaria transmission. Adjoint equations are derived, and the characterization of the optimal controls is established. Finally, we quantify the effectiveness of the two interventions aimed at limiting the spread of malaria transmission. A combination of both strategies leads to more rapid elimination of the wild mosquito population that can suppress malaria transmission. Numerical simulations are provided to illustrate the results.

MSC:

92D30 Epidemiology
49J15 Existence theories for optimal control problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bill & Melinda Gates Foundation. What We Do - Malaria Strategy Overview. Available from: https://www.gatesfoundation.org/What-We-Do/Global-Health/Malaria.
[2] CDC Parasites- Malaria. Available from: https://www.cdc.gov/parasites/malaria/index.html.
[3] Sherman, IW., Twelve diseases that changed our world (2007), Washington (DC): American Society of Microbiology Press, Washington (DC)
[4] The President’s Malaria Initiative. Available from: https://www.pmi.gov.
[5] World Malaria Report 2020. Available from: https://www.who.int/publications/i/item/9789240015791.
[6] Abdul-Ghani, R.; Farag, HF; Allam, AF, Measuring resistant-genotype transmission of malaria parasites: challenges and prospects, Parasitol Res, 113, 1481-1487 (2014)
[7] Alonso, PL; Brown, G.; Arevalo-Herrera, M., A research agenda to underpin malaria eradication, PLoS Med, 8, e1000406 (2011)
[8] Brogdon, WG; McAllister, JC., Insecticide resistance and vector control, J Agromedicine, 6, 41-58 (1999)
[9] Coutinho-Abreu, IV; Zhu, KY; Ramalho-Ortigao, M., Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges, Parasitol Int, 58, 1-8 (2010)
[10] Hurwitz, I.; Fieck, A.; Read, A., Paratransgenic control of vector borne diseases, Int J Biol Sci, 7, 1334-1344 (2011)
[11] Ito, J.; Ghosh, A.; Moreira, LA, Transgenic anopheline mosquitoes impaired in transmission of a Malaria parasite, Nature, 417, 452-455 (2002)
[12] Knipling, EF., Possibilities of insect control or eradication through the use of sexually sterile males, J Econ Entomol, 48, 459-462 (1955)
[13] Zheng, X.; Zhang, D.; Li, Y., Incompatible and sterile insect techniques combined eliminate mosquitoes, Nature, 572, 56-61 (2019)
[14] Walker, T.; Johnson, PH; Moreika, LA, The wMel Wolbachia strain blocks dengue and invades caged Aedes aegypti populations, Nature, 476, 450-453 (2011)
[15] Xi, Z.; Khoo, CCH; Dobson, SI., Wolbachia establishment and invasion in an Aedes aegypti laboratory population, Science, 310, 326-328 (2005)
[16] Alphey, L., Genetic control of mosquitoes, Annu Rev Entomol, 59, 205-224 (2014)
[17] Winskill, P.; Harris, AF; Morgan, SA, Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression, Parasit Vectors, 7, 3 (2014)
[18] Yin, H.; Yang, C.; Zhang, X., The impact of releasing sterile mosquitoes on malaria transmission, Discrete Contin Dyn Syst B, 23, 3837-3853 (2018) · Zbl 1404.92210
[19] Huang, M.; Tang, M.; Yu, J., Wolbachia infection dynamics by reaction-diffusion equations, Sci China Math, 58, 77-96 (2015) · Zbl 1337.35156
[20] Zhang, X.; Tang, S.; Cheke, RA., Models to assess how best to replace dengue virus vectors with Wolbachia-infected mosquito populations, Math Biosci, 269, 164-177 (2015) · Zbl 1335.92106
[21] Zheng, B.; Tang, M.; Yu, J., Modeling Wolbachia spread in mosquitoes through delay differential equations, SIAM J Appl Math, 74, 743-770 (2014) · Zbl 1303.92124
[22] Anguelov, R.; Dumont, Y.; Lubuma, J., Mathematical modeling of sterile insect technology for control of anopheles mosquito, Comput Math Appl, 64, 374-389 (2012) · Zbl 1252.92044
[23] Cai, L.; Ai, S.; Li, J., Dynamics of mosquitoes populations with different strategies of releasing sterile mosquitoes, SIAM J Appl Math, 75, 1223-1237 (2014) · Zbl 1320.34071
[24] Cardona-Salgado, D.; Campo-Duarte, DE; Sepulveda-Salcedo, LS, Wolbachia-based biocontrol for dengue reduction using dynamic optimization approach, Appl Math Model, 82, 125-149 (2020) · Zbl 1481.92134
[25] Dumont, Y.; Tchuenche, JM., Mathematical studies on the sterile insect technique for the Chikungunya disease and Aedes albopictus, J Math Biol, 65, 809-854 (2012) · Zbl 1311.92175
[26] Fister, KR; McCarthy, ML; Oppenheimer, SF., Diffusing wild type and sterile mosquitoes in an optimal control setting, Math Biosci, 302, 100-115 (2018) · Zbl 1404.35455
[27] Huang, J.; Ruan, S.; Yu, P., Bifurcation analysis of a mosquito population model with a saturated release rate of sterile mosquitoes, SIAM J Appl Dyn Syst, 18, 939-972 (2019) · Zbl 1428.34066
[28] Lees, RS; Gilles, JRL; Hendrichs, J., Back to the future: the sterile insect technique against mosquito disease vectors, Curr Opin Insect Sci, 10, 156-162 (2015)
[29] Multerer, L.; Smith, T.; Chitnis, N., Modeling the impact of sterile males on an Aedes aegypti population with optimal control, Math Biosci, 311, 91-102 (2019) · Zbl 1425.92131
[30] Stone, CM; Somers, M., Transient population dynamics of mosquitoes during sterile male releases: modelling mating behaviour and perturbations of life history parameters, PLoS ONE, 8, 9, e76228 (2013)
[31] Blimana, PA; Cardona-Salgado, D.; Dumont, Y., Implementation of control strategies for sterile insect techniques, Math Biosci, 314, 43-60 (2019) · Zbl 1425.92126
[32] Cai, L.; Huang, J.; Song, X., Bifurcation analysis of a mosquito population model for proportional releasing sterile mosquitoes, Discrete Contin Dyn Syst B, 24, 6279-6295 (2019) · Zbl 1427.34056
[33] Cai, L.; Ai, S.; Fan, G., Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes, Math Biosci Eng, 15, 5, 1181-1202 (2018) · Zbl 1406.92490
[34] Li, J.; Cai, L.; Li, Y., Stage-structured wild and sterile mosquito population models and their dynamics, J Biol Dyn, 11, 79-101 (2017) · Zbl 1448.92219
[35] Yu, JS; Li, Jia., Global asymptotic stability in an interactive wild and sterile mosquito model, J Differ Equ, 269, 6193-6215 (2020) · Zbl 1444.34103
[36] Yin, H.; Yang, C.; Zhang, X., Dynamics of malaria transmission model with sterile mosquitoes, J Biol Dyn, 12, 577-595 (2018) · Zbl 1448.92363
[37] Castro, D.; Yamagata, MC, Integrated urban malaria control: a case study in Dar es Salaam, Tanzania Am J Trop Med Hyg, 71, 103-117 (2004)
[38] Okosuna, KO; Ouifki, R.; Marcus, N., Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, BioSyst, 106, 136-145 (2011)
[39] Raghavendra, K.; Barik, TK, Malaria vector control: from past to future, Parasitol Res, 108, 757-779 (2011)
[40] Agusto, FB; Marcus, N.; Okosun, KO., Application of optimal control to the epidemiology of malaria, Electron J Differ Equ, 81, 1-22 (2012) · Zbl 1250.92026
[41] Khamis, D.; Mouden, CEl.; Kura, K., Optimal control of malaria: combining vector interventions and drug therapies, Malar J, 17, 174 (2018)
[42] Rafikov, M.; Bevilacqua, LJ; Wyse, A., Optimal control strategy of malaria vector using genetically modified mosquitoes, J Theor Biol, 258, 418-425 (2009) · Zbl 1405.92271
[43] Thome, RCA; Yang, HM; Esteva, L., Optimal control of Aedes aegypti mosquitoes by the sterile insect technique and insecticide, Math Biosci, 223, 12-23 (2010) · Zbl 1180.92058
[44] Chitnis, N.; Cushing, JM; Hyman, JM., Bifurcation analysis of a mathematical model for malaria transmission, SIAM J Appl Math, 67, 24-45 (2006) · Zbl 1107.92047
[45] Chitnis, N.; Hyman, JM; Cushing, JM., Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull Math Biol, 70, 1272-1296 (2008) · Zbl 1142.92025
[46] Koella, JC., On the use of mathematical models of malaria transmission, Acta Trop, 49, 1-25 (1991)
[47] Dietz, K.; Molineaux, L.; Thomas, A., A malaria model tested in the African savannah, Bull World Health Organ, 50, 347-357 (1974)
[48] Mandal, S.; Sarkar, RR; Sinha, S., Mathematical models of malaria: a review, Malar J, 10, 1-19 (2011)
[49] Li, J., New revised simple models for interactive wild and sterile mosquito populations and their dynamics, J Biol Dyn, 11, 316-333 (2017) · Zbl 1448.92217
[50] van den Driessche, P.; Watmough, J., Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math Biosci, 180, 29-48 (2002) · Zbl 1015.92036
[51] Barrios, E.; Lee, S.; Vasilieva, O., Assessing the effects of daily commuting in two-patch dengue dynamics: a case study of Cali, Colombia, J Theor Biol, 453, 14-39 (2018) · Zbl 1400.92464
[52] Martcheva, M., Introduction to mathematical epidemiology (2015), New York (NY): Springer, New York (NY) · Zbl 1333.92006
[53] Lukes, DL., Differential equations: classical to controlled (1982), New York (NY): Academic Press, New York (NY) · Zbl 0509.34003
[54] Fleming, WH; Rishel, RW., Deterministic and stochastic optimal control (1975), New York (NY): Springer-Verlag, New York (NY) · Zbl 0323.49001
[55] Lenhart, S.; Workman, JT., Optimal control applied to biological models (2007), Boca Raton: CRC Press, Boca Raton · Zbl 1291.92010
[56] Pontragin, LS; Gamkrelize, RV; Boltyanskii, VG, The mathematical theory of optimal processes (1962), New York: Wiley, New York · Zbl 0102.32001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.