×

Variational image restoration and segmentation with Rician noise. (English) Zbl 1461.90094

Summary: Restoring and segmenting images corrupted by Rician noise are now challenging issues in the field of medical image processing. Our previously proposed restoration model, which is based on the statistical property of Rician noise, was proven efficient only when the standard variation of Rician noise in the image is greater than a certain positive number. The present paper further theoretically proves that this certain positive number can be replaced by zero, i.e., the standard variation of Rician noise can be any positive value. This broadens its application range. In addition, the data-fidelity term in the proposed restoration model can be applied into the famous two-stage segmentation method for segmenting images corrupted by Rician noise. In the first stage, a new variant of modified Mumford-Shah model is established with whose data-fidelity term is designed to manipulate Rician noise in the image. The strict convexity holds for this optimization model and linearized primal-dual algorithm with theoretical convergence analysis can be implemented for achieving the global optimal solution. For the second stage, partition on the optimal smooth cartoon image is done simply by thresholding. Such two-stage segmentation method is apparently more suitable for image with Rician noise compared to other state-of-art algorithms. Numerical experiments are conducted on both synthetic and real images. The results suggest that the proposed method is more favorable for image segmentation task with Rician noise.

MSC:

90C25 Convex programming
90C90 Applications of mathematical programming

Software:

k-means++; DLMF; BSDS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16, 641-647 (1994) · doi:10.1109/34.295913
[2] Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1027-1035 (2007) · Zbl 1302.68273
[3] Baratloo, A., Hosseini, M., Negida, A., Ashal, G.: Part 1: simple definition and calculation of accuracy, sensitivity and specificity. Emergency 3(2), 48-49 (2015)
[4] Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3, 1-122 (2011) · Zbl 1229.90122 · doi:10.1561/2200000016
[5] Cai, W., Chen, S., Zhang, D.: Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation. Pattern Recognit. 40, 825-838 (2007) · Zbl 1118.68133 · doi:10.1016/j.patcog.2006.07.011
[6] Cai, S., Chan, R., Zeng, T.: A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM J. Imaging Sci. 6, 368-390 (2013) · Zbl 1283.52011 · doi:10.1137/120867068
[7] Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89-97 (2004) · Zbl 1366.94048 · doi:10.1023/B:JMIV.0000011320.81911.38
[8] Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40, 120-145 (2011) · Zbl 1255.68217 · doi:10.1007/s10851-010-0251-1
[9] Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10, 266-277 (2001) · Zbl 1039.68779 · doi:10.1109/83.902291
[10] Chan, T., Golub, G., Multet, P.: A non-linear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20, 1964-1977 (1999) · Zbl 0929.68118 · doi:10.1137/S1064827596299767
[11] Chan, R., Yang, H., Zeng, T.: A two-stage image segmentation method for blurry images with poisson or multiplicative gamma noise. SIAM J. Imaging Sci. 7, 98-127 (2014) · Zbl 1297.65066 · doi:10.1137/130920241
[12] Chen, L., Zeng, T.: A convex variational model for restoring blurred images with large Rician noise. J. Math. Imaging Vis. 53, 92-111 (2015) · Zbl 1357.94017 · doi:10.1007/s10851-014-0551-y
[13] Chen, L., Shen, C., Zhou, Z., Maquilan, G., Thoms, K., Folkert, M., Albuquerque, K., Wang, J.: Accurate segmenting of cervical tumors in PET imaging based on similarity between adjacent slices. Comput. Biol. Med. 97, 30-36 (2018) · doi:10.1016/j.compbiomed.2018.04.009
[14] Chuang, K., Tzeng, H., Chen, S., Wu, J., Chen, T.: Fuzzy c-means clustering with spatial information for image segmentation. Comput. Med. Imaging Graph. 30, 9-15 (2006) · doi:10.1016/j.compmedimag.2005.10.001
[15] Condat, L.: A Primal-dual splitting method for convex optimization involving Lipschitzian, proximable and linear composite terms. J. Optim. Theory Appl. 158, 460-479 (2013) · Zbl 1272.90110 · doi:10.1007/s10957-012-0245-9
[16] Dong, B., Chien, A., Shen, Z.: Frame based segmentation for medical images. Commun. Math. Sci. 9, 551-559 (2010) · Zbl 1232.42032
[17] Felzenszwalb, P., Huttenlocher, D.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59, 167-181 (2004) · Zbl 1477.68505 · doi:10.1023/B:VISI.0000022288.19776.77
[18] Figueiredo, M., Bioucas-Dias, J.: Restoration of Poissonian images using alternating direction optimization. IEEE Trans. Image Process. 19, 3133-3145 (2010) · Zbl 1371.94128 · doi:10.1109/TIP.2010.2053941
[19] Foi, A.: Noise estimation and removal in MR imaging: the variance-stabilization approach. In: IEEE International Symposium on Biomedical Imaging: From Nano and Macro, pp. 1809-1814 (2011)
[20] Gerig, G., Kubler, O., Kikinis, R., Jolesz, F.: Nonlinear anisotropic filtering of MRI data. IEEE Trans. Med. Imaging. 11, 221-232 (1992) · doi:10.1109/42.141646
[21] Getreuer, P., Tong, M., Vese, L.: A variational model for the restoration of MR images corrupted by blur and Rician noise. In: Advances in Visual Computing, pp. 686-698 (2011)
[22] Goldstein, T., Osher, S.: The split bregman method for l1-regularized problems. SIAM J. Imaging Sci. 2, 323-343 (2009) · Zbl 1177.65088 · doi:10.1137/080725891
[23] Gudbjartsson, H., Patz, S.: The Rician distribution of noisy MRI data. J. Magn. Reson. Med. 34, 910-914 (1995) · doi:10.1002/mrm.1910340618
[24] Henkelman, R.: Measurement of signal intensities in the presence of noise in MR images. J. Med. Phys. 12, 232-233 (1985) · doi:10.1118/1.595711
[25] Hintermüuller, M., Laurain, A.: Multiphase Image segmentation and modulation recovery based on shape and topological sensitivity. J. Math. Imaging Vis. 35, 1-22 (2009) · Zbl 1490.68282 · doi:10.1007/s10851-009-0150-5
[26] Jensen, T., Jørgensen, J., Hansen, P., Jensen, S.: Implementation of an optimal first-order method for strongly convex total variation regularization. BIT Numer. Math. 52, 329-356 (2012) · Zbl 1256.65063 · doi:10.1007/s10543-011-0359-8
[27] Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. J. Math. Imaging Vis. 11, 5-26 (1999) · Zbl 0942.35057 · doi:10.1023/A:1008318126505
[28] Lézoray, O., Grady, L.: Image Processing and Analysis with Graphs: Theory and Practice. CRC Press, Boca Raton (2012) · Zbl 1254.68036
[29] Li, F., Ng, M., Zeng, T., Shen, C.: A multiphase image segmentation method based on fuzzy region competition. SIAM J. Imaging Sci. 3, 277-299 (2010) · Zbl 1200.68267 · doi:10.1137/080736752
[30] Liu, G., Huang, T., Liu, J., Lv, X.: Total variation with overlapping group sparsity for image deblurring under impulse noise (2013). arXiv preprint arXiv:1312.6208
[31] Mark, B., Turin, W.: Probability, Random Processes, and Statistical Analysis. Cambridge University Press, Cambridge (2011) · Zbl 1259.60001
[32] Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating algorithms and measuring ecological statistics. In: ICCV, pp. 416-423 (2001)
[33] Mumford, D., Shah, J.: Boundary detection by minimizing functionals. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 22-26 (1985)
[34] Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577-685 (1989) · Zbl 0691.49036 · doi:10.1002/cpa.3160420503
[35] Nowak, R.: Wavelet-based rician noise removal for magnetic resonance imaging. IEEE Trans. Image Process. 8, 1408-1419 (1999) · doi:10.1109/83.791966
[36] Olver, F., Lozier, D., Boisvert, R., Clark, C.: NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010) · Zbl 1198.00002
[37] Papoulis, A.: Probability, Random Variables and Stochastic Processes, 2nd edn. McGraw-Hill, Tokyo (1984) · Zbl 0558.60001
[38] Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629-639 (1990) · doi:10.1109/34.56205
[39] Pham, D., Xu, C., Prince, J.: Current methods in medical image segmentation. Annu. Rev. Biomed. Eng. 2, 315-337 (2000) · doi:10.1146/annurev.bioeng.2.1.315
[40] Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22, 888-905 (2000) · doi:10.1109/34.868688
[41] Sijbers, J., Dekker, A., Dyck, D., Raman, E.: Estimation of signal and noise from Rician distributed data. In: SPCOM-1998, pp. 140-142 (1998)
[42] Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S., Barillot, C.: Non-local means variants for denoising of diffusion-weighted and diffusion tensor MRI. In: MICCAI-2007, pp. 344-351 (2007)
[43] Wiest-Daesslé, N., Prima, S., Coupé, P., Morrissey, S., Barillot, C.: Rician noise removal by non-local means filtering for low signal-to-noise ratio MRI: applications to DT-MRI. In: MICCAI-2008, pp. 171-179 (2008)
[44] Wood, J., Johnson, K.: Wavelet packet denoising of magnetic resonance images: importance of Rician noise at low SNR. Magn. Reson. Med. 41, 631-635 (1999) · doi:10.1002/(SICI)1522-2594(199903)41:3<631::AID-MRM29>3.0.CO;2-Q
[45] Yuan, J., Bae, E., Tai, X., Boycov, Y.: A continuous max-flow approach to Potts model. In: ECCV (2010)
[46] Yuan, J., Bae, E., Tai, X.: A study on continuous max-flow and min-cut approaches. In: CVPR (2010)
[47] Yuan, J., Schnörr, C., Steidl, G.: Simultaneous optical flow estimation and decomposition. SIAM J. Sci. Comput. 29, 2283-2304 (2007) · Zbl 1160.68675 · doi:10.1137/060660709
[48] Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restoration. UCLA CAM Report 08-34 (2008)
[49] Zhu, S., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18, 884-900 (1996) · doi:10.1109/34.537343
[50] Zhu, M., Wright, S., Chan, T.: Duality-based algorithms for total-variation-regularized image restoration. Comput. Optim. Appl. 47, 377-400 (2010) · Zbl 1208.90165 · doi:10.1007/s10589-008-9225-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.