×

Random periodic solutions of SPDEs via integral equations and Wiener-Sobolev compact embedding. (English) Zbl 1242.60065

Summary: We study the existence of random periodic solutions for semilinear SPDEs on a bounded domain with a smooth boundary. We identify them as the solutions of coupled forward-backward infinite horizon stochastic integral equations on \(L^{2}(D)\) in general cases. For this we use Mercer’s Theorem and eigenvalues and eigenfunctions of the second order differential operators in the infinite horizon integral equations. We then use the argument of the relative compactness of Wiener – Sobolev spaces in \(C^{0}\)([0,T],\(L^{2}(\Omega \times D))\) and generalized Schauder’s fixed point theorem to prove the existence of a solution of the integral equations. This is the first paper in literature to study random periodic solutions of SPDEs. Our result is also new in finding semi-stable stationary solution for non-dissipative SPDEs, while in literature the classical method is to use the pull-back technique so researchers were only able to find stable stationary solutions for dissipative systems.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Arnold, L., Random Dynamical Systems (1998), Springer-Verlag: Springer-Verlag Berlin-Heidelberg-New York
[2] Bally, V.; Saussereau, B., A relative compactness criterion in Wiener-Sobolev spaces and application to semi-linear stochastic PDEs, J. Funct. Anal., 210, 465-515 (2004) · Zbl 1055.60051
[3] Caraballo, T.; Kloeden, P. E.; Schmalfuss, B., Exponentially stable stationary solutions for stochastic evolution equations and their perturbation, Appl. Math. Optim., 50, 183-207 (2004) · Zbl 1066.60058
[4] Chekroun, M. D.; Simonnet, E.; Ghil, M., Stochastic climate dynamics: Random attractors and time-dependent invariant measures, Phys. D, 240, 1685-1700 (2011) · Zbl 1244.37046
[5] Chojnowska-Michalik, A., Periodic distributions for linear equations with general additive noise, Bull. Pol. Acad. Sci. Math., 38, 1-12, 23-33 (1990) · Zbl 0757.60053
[6] Chojnowska-Michalik, A., Periodic linear equations with general additive noise in Hilbert spaces, (Stochastic Systems and Optimization. Stochastic Systems and Optimization, Warsaw, 1988. Stochastic Systems and Optimization. Stochastic Systems and Optimization, Warsaw, 1988, Lecture Notes in Control and Inform. Sci., vol. 136 (1989), Springer: Springer Berlin), 169-183
[7] Da Prato, G.; Malliavin, P.; Nualart, D., Compact families of Wiener functionals, C. R. Acad. Sci. Paris Ser. I Math., 315, 1287-1291 (1992) · Zbl 0782.60002
[8] Da Prato, G.; Zabczyk, J., Stochastic Equations in Infinite Dimensions (1992), Cambridge University Press · Zbl 0761.60052
[9] Duan, J.; Lu, K.; Schmalfuss, B., Invariant manifolds for stochastic partial differential equations, Ann. Probab., 31, 2109-2135 (2003) · Zbl 1052.60048
[10] Duan, J.; Lu, K.; Schmalfuss, B., Smooth stable and unstable manifolds for stochastic evolutionary equations, J. Dynam. Differential Equations, 16, 949-972 (2004) · Zbl 1065.60077
[11] E, W.; Khanin, K.; Mazel, A.; Sinai, Ya., Invariant measures for Burgers equation with stochastic forcing, Ann. of Math., 151, 877-960 (2000) · Zbl 0972.35196
[12] Feng, C. R.; Zhao, H. Z.; Zhou, B., Pathwise random periodic solutions of stochastic differential equations, J. Differential Equations, 251, 119-149 (2011) · Zbl 1227.34058
[13] Fife, P. C., Solutions of parabolic boundary problems existing for all time, Arch. Ration. Mech. Anal., 16, 155-186 (1964) · Zbl 0173.38204
[14] Hochstadt, H., Integral Equations (1973), Wiley: Wiley New York · Zbl 0137.08601
[15] Hess, P., Periodic-Parabolic Boundary Value: Problems and Positivity (1991), Pitman · Zbl 0731.35050
[16] Klünger, M., Periodicity and Sharkovskyʼs theorem for random dynamical systems, Stoch. Dyn., 1, 299-338 (2001) · Zbl 1064.37037
[17] Lieberman, G. M., Time-periodic solutions of linear parabolic differential equations, Comm. Partial Differential Equations, 24, 631-663 (1999) · Zbl 0928.35012
[18] Lieberman, G. M., Time-periodic solutions of quasilinear parabolic differential equations. I. Dirichlet boundary conditions, J. Math. Anal. Appl., 264, 617-638 (2001) · Zbl 1002.35073
[19] Lian, Z.; Lu, K., Lyapunov exponents and invariant manifolds for infinite dimensional random dynamical systems in a Banach space, Mem. Amer. Math. Soc., 206, 967, 106 (2010) · Zbl 1200.37047
[20] Liu, Y.; Zhao, H. Z., Representation of pathwise stationary solutions of stochastic Burgers equations, Stoch. Dyn., 9, 4, 613-634 (2009) · Zbl 1192.60083
[21] Mattingly, J., Ergodicity of 2D Navier-Stokes equations with random forcing and large viscosity, Comm. Math. Phys., 206, 2, 273-288 (1999) · Zbl 0953.37023
[22] Mohammed, S.-E. A.; Zhang, T.; Zhao, H. Z., The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations, Mem. Amer. Math. Soc., 196, 917, 1-105 (2008) · Zbl 1169.60014
[23] Nualart, D., The Malliavin Calculus and Related Topics (1996), Springer: Springer Berlin
[24] Peszat, S., On a Sobolev space of functions of infinite number of variable, Bull. Pol. Acad. Sci. Math., 41, 55-60 (1993) · Zbl 0801.46040
[25] Poincaré, H., Memoire sur les courbes definier par une equation differentiate, J. Math. Pures Appl.. J. Math. Pures Appl., J. Math. Pures Appl.. J. Math. Pures Appl.. J. Math. Pures Appl., J. Math. Pures Appl., J. Math. Pures Appl.. J. Math. Pures Appl.. J. Math. Pures Appl., J. Math. Pures Appl.. J. Math. Pures Appl.. J. Math. Pures Appl., J. Math. Pures Appl., J. Math. Pures Appl., J. Math. Pures Appl., 4, 151-217 (1886)
[26] Polyanin, A. D.; Manzhirov, A. V., Handbook of Integral Equations (2008), Chapman and Hall/CRC Press: Chapman and Hall/CRC Press Boca Raton · Zbl 1021.45001
[27] Prévôt, C.; Röckner, M., A Concise Course on Stochastic Partial Differential Equations, Lecture Notes in Math., vol. 1905 (2007), Springer: Springer Berlin · Zbl 1123.60001
[28] Sinai, Ya., Two results concerning asymptotic behaviour of solutions of Burgers equation with force, J. Statist. Phys., 64, 1-12 (1991) · Zbl 0978.35500
[29] Sinai, Ya., Burgers system driven by a periodic stochastic flows, (Itôʼs Stochastic Calculus and Probability Theory (1996), Springer: Springer Tokyo), 347-353 · Zbl 0866.35148
[30] Van Kampen, N. G., Stochastic Processes in Physics and Chemistry (2007), Elsevier · Zbl 0511.60038
[31] Vejvoda, O., Partial Differential Equations: Time Periodic Solutions (1982), Martinus Nijhoff: Martinus Nijhoff The Hague · Zbl 0183.10401
[32] Zhang, Q.; Zhao, H. Z., Stationary solutions of SPDEs and infinite horizon BDSDEs, J. Funct. Anal., 252, 171-219 (2007) · Zbl 1127.60059
[33] Zhang, Q.; Zhao, H. Z., Stationary solutions of SPDEs and infinite horizon BDSDEs with Non-Lipschitz coefficients, J. Differential Equations, 248, 953-991 (2010) · Zbl 1196.60120
[34] Zhao, H. Z.; Zheng, Z. H., Random periodic solutions of random dynamical systems, J. Differential Equations, 246, 2020-2038 (2009) · Zbl 1162.37023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.