×

Isometries of non-self-adjoint operator algebras. (English) Zbl 0713.46043

The paper is devoted to the study of isometries of certain non selfadjoint operator algebras by means of the structure of the complete holomorphic vector fields on their unit balls and the associated partial Jordan triple product.
A family \({\mathfrak N}\) of projections in B(H) is called a nest if it is totally ordered and contains 0 and I. \({\mathfrak N}\) is said to be complete if it is closed in the strong operator topology. The nest algebra alg \({\mathfrak N}\) associated with \({\mathfrak N}\) is defined as \[ alg {\mathfrak N}=\{T\in B(H):\;(I-P)TP=0\text{ for all } P\in {\mathfrak N}\}. \] The main result of the paper says that if \({\mathfrak N}\) and \({\mathfrak M}\) are complete nests of projection in B(H) then any linear isometry between alg \({\mathfrak N}\) and alg \({\mathfrak M}\) is of the form \(T\mapsto UTW\) or \(T\mapsto UJT^*JW\), where U, V are suitable unitary operators and J a fixed involution of H.
Reviewer: Sh.A.Ayupov

MSC:

46L70 Nonassociative selfadjoint operator algebras
47L30 Abstract operator algebras on Hilbert spaces
46L05 General theory of \(C^*\)-algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arazy, J., An application of infinite dimensional holomorphy to the geometry of Banach spaces, (Geometrical Aspects of Functional Analysis. Geometrical Aspects of Functional Analysis, Lecture Notes in Mathematics, Vol. 1267 (1987), Springer-Verlag: Springer-Verlag New York/Berlin), 122-150
[2] Arveson, W. B., Subalgebras of \(C^∗\)-algebras, Acta Math., 123, 141-224 (1969) · Zbl 0194.15701
[3] Arveson, W. B., An Invitation to \(C^∗\)-Algebras (1976), Springer-Verlag: Springer-Verlag New York · Zbl 0344.46123
[4] Alfsen, E. M.; Shultz, F. W., Non-communicative spectral theory for affine function spaces on convex sets, Mem. Amer. Math. Soc., 172 (1972)
[5] Bonsall, F. F.; Duncan, J., Numerical ranges of operators on normed spaces and of elements of normed algebras, (London Math. Soc. Lecture Notes Series, Vol. 2 (1971), Cambridge Univ. Press: Cambridge Univ. Press London/New York) · Zbl 0207.44802
[6] Braun, R.; Kaup, W.; Upmeier, H., On the automorphisms of circular and Reinhard domains on Complex Banach spaces, Manuscripta Math., 25, 97-133 (1978) · Zbl 0398.32001
[7] Christensen, E., Derivations of nest algebras, Math. Ann., 229, 155-161 (1977) · Zbl 0356.46057
[8] Davidson, K. R., Nest algebras, (Research Notes in Mathematics, Vol. 191 (1988), Longman Scientific and Technical: Longman Scientific and Technical New York), Pitman · Zbl 0994.47072
[9] Erdos, J. A., Operators of finite rank in nest algebras, J. London Math. Soc., 43, 391-397 (1968) · Zbl 0169.17501
[10] Fall, T.; Arveson, W. B.; Muhly, P. S., Perturbations of nest algebras, J. Operator Theory, 1, 137-150 (1979) · Zbl 0455.46051
[11] Harris, L., A generalization of \(C^∗\)-algebras, (Proc. London Math. Soc. (3), 42 (1981)), 331-361 · Zbl 0476.46054
[12] Harris, L., Schwartz’s Lemma in normed linear spaces, (Proc. Natl. Acad. Sci. U.S.A., 61 (1969)), 1014-1017 · Zbl 0199.19401
[13] Hoppenwasser, A.; Plastiras, J. K., Isometries of quasitriangular operator algebras, (Proc. Amer. Math. Soc., 65 (1977)), 242-244 · Zbl 0337.46054
[14] Isidro, J. M.; Stacho, L. L., Holomorphic automorphism groups in Banach spaces: An elementary introduction, (North-Holland Math. Studies, Vol. 105 (1985), North-Holland: North-Holland Amsterdam) · Zbl 0834.17046
[15] Kadison, R. V., Isometries of operator algebras, Ann. of Math., 54, 325-338 (1951) · Zbl 0045.06201
[16] Kadison, R. V.; Ringrose, J. R., (Fundamentals of the Theory of Operator Algebras, Vol. 2 (1986), Academic Press: Academic Press Orlando, FL) · Zbl 0601.46054
[17] Kaup, W., Algebraic characterization of symmetric complex Banach manifolds, Math. Ann., 228, 39-64 (1977) · Zbl 0335.58005
[18] Kaup, W., A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces, Math. Z., 183, 503 (1983) · Zbl 0519.32024
[19] Kaup, W.; Upmeier, H., Banach spaces with biholomorphically equivalent unit balls are isomorphic, (Proc. Amer. Math. Soc., 58 (1976)), 129-133 · Zbl 0337.32012
[20] Loos, O., Bounded symmetric domains and Jordan pairs, Irvine lecture notes (1975) · Zbl 0282.17007
[21] Paulsen, V. I., Completely bounded maps and dilations, (Research Notes in Mathematics, Vol. 146 (1986), Pitman: Pitman London) · Zbl 0614.47006
[22] Potapov, V. P., The multiplicative structure of \(J\)-contractive matrix functions, Amer. Math. Soc. Transl., 15, 131-243 (1960) · Zbl 0090.05403
[23] Ringrosk, J. R., On some algebras of operators, (Proc. London Math. Soc. (3), 15 (1965)), 61-83
[24] Ringrose, J. R., On some algebras of operators, II, (Proc. London Math. Soc. (3), 16 (1966)), 385-402 · Zbl 0156.14301
[25] Sinclair, A. M., Jordan homomorphisms and derivations on semisimple Banach algebras, (Proc. Amer. Math. Soc., 24 (1970)), 209-214 · Zbl 0175.44001
[26] Stacho, L. L., A projection principle concerning biholomorphic automorphisms, Acta Sci. Math., 44, 99-124 (1982) · Zbl 0505.58008
[27] Stacho, L. L., A short proof that the biholomorphic automorphisms of the unit ball in certain \(L^p\) spaces are linear, Acta Sci. Math., 41, 381-383 (1979) · Zbl 0432.58006
[28] Stornier, E., Positive linear maps of operator algebras, Acta Math., 110, 233-278 (1963)
[29] Upmeier, H., Symmetric Banach manifolds and Jordan \(C^∗\)-algebras, (North-Holland Math. Studies, Vol. 104 (1985), North-Holland: North-Holland Amsterdam) · Zbl 0561.46032
[30] Upmeier, H., Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics, (CBMS-NSF Regional Conference. CBMS-NSF Regional Conference, Irvine 1985 (1987), Amer. Math. Soc: Amer. Math. Soc Providence, RI) · Zbl 0608.17013
[31] Vigué, J. P., Le groupe des automorphismes analytiques d’un domaine borné d’un espace de Banach complexe. Application aux domaines bornés symétriques, Ann. Sci. Ecole Norm. Sup., 9, 203-282 (1976) · Zbl 0333.32027
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.