×

Quantization maps, algebra representation, and non-commutative Fourier transform for Lie groups. (English) Zbl 1296.81041

Authors’ abstract: The phase space given by the cotangent bundle of a Lie group appears in the context of several models for physical systems. A representation for the quantum system in terms of non-commutative functions on the (dual) Lie algebra, and a generalized notion of (non-commutative) Fourier transform, different from standard harmonic analysis, has been recently developed, and found several applications, especially in the quantum gravity literature. We show that this algebra representation can be defined on the sole basis of a quantization map of the classical Poisson algebra, and identify the conditions for its existence. In particular, the corresponding non-commutative star-product carried by this representation is obtained directly from the quantization map via deformation quantization. We then clarify under which conditions a unitary intertwiner between such algebra representation and the usual group representation can be constructed giving rise to the non-commutative plane waves and consequently, the non-commutative Fourier transform. The compact groups U(1) and SU(2) are considered for different choices of quantization maps, such as the symmetric and the Duflo map, and we exhibit the corresponding star-products, algebra representations, and non-commutative plane waves.

MSC:

81S10 Geometry and quantization, symplectic methods
81Q35 Quantum mechanics on special spaces: manifolds, fractals, graphs, lattices
53D55 Deformation quantization, star products
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Thiemann, T., Modern Canonical Quantum General Relativity (2007) · Zbl 1129.83004
[2] Rovelli, C., Quantum Gravity (2006)
[3] Rovelli, C., Zakopane lectures on loop gravity, PoS, QGQGS2011, 003 (2011)
[4] Perez, A., The spin-foam approach to quantum gravity, Living Rev. Relativ., 16, 3 (2013) · Zbl 1320.83008 · doi:10.12942/lrr-2013-3
[5] Oriti, D.; Ellis, G. F.; Murugan, J.; Weltman, A., The microscopic dynamics of quantum space as a group field theory, Foundations of Space and Time: Reflections on Quantum Gravity, 257 (2012)
[6] Oriti, D.; Oriti, D., The group field theory approach to quantum gravity, Approaches to Quantum Gravity (2009) · Zbl 1223.83025
[7] Baratin, A.; Oriti, D., Ten questions on group field theory (and their tentative answers), J. Phys.: Conf. Ser., 360, 012002 (2012) · doi:10.1088/1742-6596/360/1/012002
[8] Freidel, L.; Livine, E. R., Ponzano-Regge model revisited III: Feynman diagrams and effective field theory, Class. Quantum Grav., 23, 2021 (2006) · Zbl 1091.83503 · doi:10.1088/0264-9381/23/6/012
[9] Freidel, L.; Majid, S., Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1 quantum gravity, Class. Quantum Grav., 25, 045006 (2008) · Zbl 1190.83070 · doi:10.1088/0264-9381/25/4/045006
[10] Joung, E.; Mourad, J.; Noui, K., Three dimensional quantum geometry and deformed Poincare symmetry, J. Math. Phys., 50, 052503 (2009) · Zbl 1187.58008 · doi:10.1063/1.3131682
[11] Baratin, A.; Oriti, D., Group field theory with non-commutative metric variables, Phys. Rev. Lett., 105, 221302 (2010) · doi:10.1103/PhysRevLett.105.221302
[12] Baratin, A.; Oriti, D., Quantum simplicial geometry in the group field theory formalism: Reconsidering the Barrett-Crane model, New J. Phys., 13, 125011 (2011) · Zbl 1448.83034 · doi:10.1088/1367-2630/13/12/125011
[13] Baratin, A.; Oriti, D., Group field theory and simplicial gravity path integrals: A model for Holst-Plebanski gravity, Phys. Rev. D, 85, 044003 (2012) · doi:10.1103/PhysRevD.85.044003
[14] Baratin, A.; Girelli, F.; Oriti, D., Diffeomorphisms in group field theories, Phys. Rev. D, 83, 104051 (2011) · doi:10.1103/PhysRevD.83.104051
[15] Oriti, D.; Pereira, R.; Sindoni, L., Coherent states in quantum gravity: A construction based on the flux representation of LQG, J. Phys. A, 45, 244004 (2012) · Zbl 1248.81082 · doi:10.1088/1751-8113/45/24/244004
[16] Oriti, D.; Raasakka, M., Quantum mechanics on SO(3) via non-commutative dual variables, Phys. Rev. D, 84, 025003 (2011) · doi:10.1103/PhysRevD.84.025003
[17] Dupuis, M.; Girelli, F.; Livine, E. R., Spinors and Voros star-product for group field theory: First contact, Phys. Rev. D, 86, 105034 (2012) · doi:10.1103/PhysRevD.86.105034
[18] Alekseev, A.; Polychronakos, A.; Smedback, M., On area and entropy of a black hole, Phys. Lett. B, 574, 296 (2003) · Zbl 1058.83515 · doi:10.1016/j.physletb.2003.08.062
[19] Sahlmann, H.; Thiemann, T., Chern-Simons expectation values and quantum horizons from LQG and the Duflo map, Phys. Rev. Lett., 108, 111303 (2012) · doi:10.1103/PhysRevLett.108.111303
[20] Sahlmann, H.; Thiemann, T., Chern-Simons theory, Stokes” theorem, and the Duflo map, J. Geom. Phys., 61, 1104 (2011) · Zbl 1216.81101 · doi:10.1016/j.geomphys.2011.02.013
[21] Noui, K.; Perez, A.; Pranzetti, D., Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity, JHEP, 2011, 1110, 036 · Zbl 1303.83013 · doi:10.1007/JHEP10(2011)036
[22] Majid, S.; Schroers, B., q-Deformation and Semidualisation in 3D quantum gravity, J. Phys. A, 42, 425402 (2009) · Zbl 1187.83033 · doi:10.1088/1751-8113/42/42/425402
[23] Rosa, L.; Vitale, P., On the ⋆-product quantization and the Duflo map in three dimensions, Mod. Phys. Lett. A, 27, 1250207 (2012) · Zbl 1260.81137 · doi:10.1142/S0217732312502070
[24] Gracia-Bondia, J. M.; Lizzi, F.; Marmo, G.; Vitale, P., Infinitely many star products to play with, JHEP, 2002, 204, 026 · doi:10.1088/1126-6708/2002/04/026
[25] Kirillov, A., Lectures on the Orbit Method, 64 (2004) · Zbl 1229.22003
[26] Wildberger, N. J., On the fourier transform of a compact semisimple lie group, J. Austral. Math. Soc., 56, 1, 64 (1994) · Zbl 0842.22015 · doi:10.1017/S1446788700034741
[27] Helgason, S., Geometric Analysis on Symmetric Spaces, 39 (2008) · Zbl 1157.43003
[28] Bayen, F.; Flato, M.; Fronsdal, C.; Lichnerowicz, A.; Sternheimer, D., Quantum mechanics as a deformation of classical mechanics, Lett. Math. Phys., 1, 521 (1977) · doi:10.1007/BF00399745
[29] We will use the physicists’ convention of self-adjoint Lie algebra elements for unitary groups throughout.
[30] Where appropriate, the equations should be read as holding for all values i, j, k = 1, …, d.
[31] The pointwise product · is symmetric and associative, and { ·, ·} is antisymmetric and satisfies the Jacobi identity. Furthermore, both structures are compatible in the sense that, for any \documentclass[12pt]{minimal}\( \begin{document}f,g,h\in C^\infty (T^* \mathbb{R}^d)\end{document} \), {f, g · h} = {f, g} · h + g · {f, h}, that is, the Leibniz rule “intertwines” pointwise multiplication and Poisson brackets.
[32] Böhm, A., The Rigged Hilbert Space and Quantum Mechanics (1978) · Zbl 0388.46045
[33] Gelfand, I. M.; Vilenkin, N. Y., Generalized Functions - Vol 4: Applications of Harmonic Analysis (1964)
[34] Gotay, M. J.; Grundling, H. B.; Tuynman, G. M., Obstruction results in quantization theory, J. Nonlinear Sci., 6, 469 (1996) · Zbl 0863.58030 · doi:10.1007/BF02440163
[35] Neumann, J., Die eindeutigkeit der schroedingerschen operatoren, Math. Ann., 104, 570 (1931) · Zbl 0001.24703 · doi:10.1007/BF01457956
[36] Neumann, J., Ueber einen satz von herrn m. h. stone, Ann. Math., 33, 567 (1932) · JFM 58.0423.03 · doi:10.2307/1968535
[37] Djokovic, D.; Hofmann, K. H., The surjectivity question for the exponential function of real Lie groups: A status report, J. Lie Theory, 7, 171 (1997) · Zbl 0888.22003
[38] Wüstner, M., The classification of all simple lie groups with surjective exponential map, J. Lie Theory, 15, 269 (2005) · Zbl 1072.22003
[39] The canonical symplectic 1-form θ on T*G is obtained via the pull-back π* : T*G → T*(T*G) of the canonical bundle projection π : T*G → G, π(α) = p ∈ G for all \documentclass[12pt]{minimal}\( \begin{document}\alpha \in T_p^*G\end{document} \). The symplectic 2-form is then obtained as ω = −dθ. To any f ∈ \(C^∞\)(T*G) can then be associated a vector field \(X_f\) on T*G via the relation ω \((X_f\), ·) = df. The Poisson bracket for functions f, g ∈ \(C^∞\)(T*G) is then given canonically by {f, g} ≔ ω \((X_f, X_g) ∈ C^∞\)(T*G).\(^{48} \)
[40] The problem is that the target of the map Δ is \(C^∞\)(G × G) and not the algebraic tensor product \(C^∞\)(G) ⊗ \(C^∞\)(G). We can identify \(C^∞\)(G) ⊗ \(C^∞\)(G) with a subspace of \(C^∞\)(G × G), but the image of Δ is not contained in this subspace unless G is finite. However, each unital subalgebra \documentclass[12pt]{minimal}\( \begin{document}\mathfrak{a}\subseteq C^\infty (G)\end{document}\) which satisfies \documentclass[12pt]{minimal}\( \begin{document}\Delta (\mathfrak{a})\subseteq \mathfrak{a}\otimes \mathfrak{a}\end{document}\) and \documentclass[12pt]{minimal}\( \begin{document}S(\mathfrak{a})\subseteq \mathfrak{a}\end{document}\) is a Hopf algebra with respect to the restriction of the maps Δ, ε and S.
[41] It is an interesting question, which we will not address here, whether the non-commutative plane wave must be of the above form in order for a compatible coordinate system to exist, and furthermore, how to characterize the class of star-products, for which such coordinates can be found.
[42] Dittrich, B.; Guedes, C.; Oriti, D., On the space of generalized fluxes for loop quantum gravity, Class. Quantum Grav., 30, 055008 (2013) · Zbl 1263.83067 · doi:10.1088/0264-9381/30/5/055008
[43] Gutt, S., An explicit *-product on the cotangent bundle of a Lie group, Lett. Math. Phys., 7, 249 (1983) · Zbl 0522.58019 · doi:10.1007/BF00400441
[44] Kontsevich, M., Deformation quantization of poisson manifolds, Lett. Math. Phys., 66, 157 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[45] Freidel, L.; Livine, E. R., Effective 3D quantum gravity and non-commutative quantum field theory, Phys. Rev. Lett., 96, 221301 (2006) · Zbl 1228.83047 · doi:10.1103/PhysRevLett.96.221301
[46] Livine, E. R., Matrix models as non-commutative field theories on \documentclass[12pt]{minimal}\( \begin{document}\mathbb{R}^3\end{document} \), Class. Quantum Grav., 26, 195014 (2009) · Zbl 1178.83025 · doi:10.1088/0264-9381/26/19/195014
[48] Vilasi, G., Hamiltonian Dynamics (2001) · Zbl 0980.37001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.