×

Moments of the Hermitian matrix Jacobi process. (English) Zbl 1402.15024

Summary: In this paper, we compute the expectation of traces of powers of the Hermitian matrix Jacobi process for a large enough but fixed size. To proceed, we first derive the semi-group density of its eigenvalues process as a bilinear series of symmetric Jacobi polynomials. Next, we use the expansion of power sums in the Schur polynomial basis and the integral Cauchy-Binet formula in order to determine the partitions having nonzero contributions after integration. It turns out that these are hooks of bounded weight and the sought expectation results from the integral of a product of two Schur functions with respect to a generalized beta distribution. For special values of the parameters on which the matrix Jacobi process depends, the last integral reduces to the Cauchy determinant and we close the paper with the investigation of the asymptotic behavior of the resulting formula as the matrix size tends to infinity.

MSC:

15B52 Random matrices (algebraic aspects)
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
15B57 Hermitian, skew-Hermitian, and related matrices
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Andrews, G.E., Askey, R., Roy, R.: Special Functions. Cambridge University Press, Cambridge (1999) · Zbl 0920.33001 · doi:10.1017/CBO9781107325937
[2] Beerends, RJ; Opdam, EM, Certain hypergeometric series related to the root system \(BC\), Trans. Am. Math. Soc., 339, 581-607, (1993) · Zbl 0794.33009
[3] Berezin, FA; Karpelevic, FI, Zonal spherical functions and Laplace operators on some symmetric spaces, Dokl. Akad. Nauk SSSR (N.S.), 118, 9-12, (1958) · Zbl 0078.09203
[4] Biane, P.: Free Brownian Motion, Free Stochastic Calculus and Random Matrices. Fields. Inst. Commun., 12, Amer. Math. Soc. Providence, RI, 1-19 (1997) · Zbl 0873.60056
[5] Capitaine, M; Casalis, M, Asymptotic freeness by generalized moments for Gaussian and Wishart matrices, Appl. Beta Random Matrices. Indiana Univ. Math. J., 53, 397-431, (2004) · Zbl 1063.46054 · doi:10.1512/iumj.2004.53.2325
[6] Carré, C; Deneufchatel, M; Luque, JG; Vivo, P, Asymptotics of Selberg-like integrals: the unitary case and newton’s interpolation formula, J. Math. Phys., 51, 19, (2010) · Zbl 1314.81177 · doi:10.1063/1.3514535
[7] Collins, B, Product of random projections, Jacobi ensembles and universality problems arising from free probability, Probab. Theory Relat. Fields, 133, 315-344, (2005) · Zbl 1100.46036 · doi:10.1007/s00440-005-0428-5
[8] Dahlqvist, A., Collins, B., Kemp, T.: The hard edge of unitary Brownian motion. Probab. Theory Relat. Fields (2017) · Zbl 1384.15009
[9] Débiard, A.: Système Différentiel Hypergéométrique et Parties Radiales des Opérateurs Invariants des Espaces Symétriques de Type \(BC_p\). Lecture Notes in Math., vol. 1296. Springer, Berlin (1987) · Zbl 0645.33016
[10] Deift, P., Gioev, D.: Random Matrix Theory: Invariant Ensembles and Universality. Courant Lecture Notes in Mathematics, vol. 18. Courant Institute of Mathematical Sciences, New York (2009) · Zbl 1171.15023
[11] Demni, N, Free Jacobi process, J. Theory Probab., 21, 118-143, (2008) · Zbl 1145.46041 · doi:10.1007/s10959-007-0110-1
[12] Demni, N, \(β \)-Jacobi processes, Adv. Pure Appl. Math., 1, 325-344, (2010) · Zbl 1207.60042 · doi:10.1515/apam.2010.019
[13] Demni, N.: Inverse of the flow and moments of the free Jacobi process associated with one projection. Available on ArXiv · Zbl 1392.60009
[14] Demni, N., Hamdi, T., Hmidi, T.: Spectral distribution of the free Jacobi process. Indiana Univ. J. 61(3) (2012) · Zbl 1283.46046
[15] Demni, N; Hmidi, T, Spectral distribution of the free Jacobi process associated with one projection, Colloq. Math., 137, 271-296, (2014) · Zbl 1319.46044 · doi:10.4064/cm137-2-11
[16] Doumerc, Y.: Matrices aléatoires, processus stochastiques et groupes de réflexions. Ph.D. thesis, Paul Sabatier Univ. Available at http://perso.math.univ-toulouse.fr/ledoux/doctoral-students/
[17] Hoogenboom, B, Spherical functions and invariant differential operators on complex Grassmann manifolds, Ark. Mat., 20, 69-85, (1982) · Zbl 0496.33010 · doi:10.1007/BF02390499
[18] Katori, M; Tanemura, H, Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems, J. Math. Phys., 45, 3058-3085, (2004) · Zbl 1071.82045 · doi:10.1063/1.1765215
[19] Lascoux, A.: Square-ice enumeration. Sém. Lothar. Combin. 42, Art. B42p, 15 pp (1999) · Zbl 0921.05003
[20] Lassalle, M, Une formule du binôme généralisée pour LES polynômes de Jack, C. R. Acad. Sci. Paris Sér. I Math., 310, 253-256, (1990) · Zbl 0698.33010
[21] Lassalle, M, Coefficients du binôme généralisés, C. R. Acad. Sci. Paris. Sér. I Math., 310, 257-260, (1990) · Zbl 0733.33001
[22] Lassalle, M.: Polynômes de Jacobi. C. R. Acad. Sci. Paris. t. 312, Série I. pp. 425-428 (1991)
[23] Lévy, T, Schur-Weyl duality and the heat kernel measure on the unitary group, Adv. Math., 218, 537-575, (2008) · Zbl 1147.60053 · doi:10.1016/j.aim.2008.01.006
[24] Liao, M.: Lévy Processes in Lie Groups. Cambridge University Press, Cambridge (2004) · Zbl 1076.60004 · doi:10.1017/CBO9780511546624
[25] MacDonald, I.G.: Symmetric Functions and Hall Polynomials. Second edition, Mathematical Monographs, Oxford (1995) · Zbl 0824.05059
[26] Olshanski, G., Okounkov, A.: Limits of \(BC\)-type orthogonal polynomials as the number of variables goes too infinity. Jack, Hall-Littlewood and Macdonald polynomials, 281-318, Contemp. Math. 417, Amer. Math. Soc., Providence, RI (2006) · Zbl 1151.33008
[27] Olshanski, GI; Osinenko, AA, Multivariate Jacobi polynomial and the Selberg integral, Funct. Anal. Appl., 46, 262-278, (2012) · Zbl 1306.43006 · doi:10.1007/s10688-012-0034-0
[28] Rains, EM, Combinatorial properties of Brownian motion on the compact classical groups, J. Theor. Probab., 10, 659-679, (1997) · Zbl 1002.60504 · doi:10.1023/A:1022601711176
[29] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin (1999) · Zbl 0917.60006 · doi:10.1007/978-3-662-06400-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.