×

INM RAS coupled atmosphere-ionosphere general circulation model INMAIM (0–130 km). (English) Zbl 1410.65316

Summary: The paper presents a new INM RAS atmospheric general circulation model, which includes troposphere, stratosphere, mesosphere, and the lower thermosphere, as well as the lower ionospheric regions (INMAIM). Based on the atmospheric part of the INM climatic model INMCM, a new general circulation model was created by adding the middle atmosphere and lower ionosphere description up to 130 km altitudes. A new computational unit for radiative processes calculation was developed for this purpose. For the lower ionosphere a separate plasma chemistry local model was created. The identification of the INMAIM model climate in the mesosphere and lower thermosphere was carried out based on climatological observations. It was shown that model reproduces the general climatic characteristics considerably well.

MSC:

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences
86-08 Computational methods for problems pertaining to geophysics
86A10 Meteorology and atmospheric physics
35Q86 PDEs in connection with geophysics
80A20 Heat and mass transfer, heat flow (MSC2010)
80A32 Chemically reacting flows
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. P. Baldwin and T. J. Dunkerton, Propagation of the Arctic oscillation from the stratosphere to the troposphere. J. Geophys. Res. 104 (1999), No. D24 30937-30946.; Baldwin, M. P.; Dunkerton, T. J., Propagation of the Arctic oscillation from the stratosphere to the troposphere, J. Geophys. Res, 104, D24, 30937-30946 (1999)
[2] G. Brasseur and S. Solomon, Aeronomy of the Middle Atmosphere 3rd ed. Springer, Dordrecht, 2005.; Brasseur, G.; Solomon, S., Aeronomy of the Middle Atmosphere (2005)
[3] N. A. Dianskii, V. Ya. Galin, A. V. Gusev, S. P. Smyshlyaev, E. M. Volodin, and N. G. Iakovlev, The model of the Earth system developed at the INM RA5. Russ. J. Numer. Anal. Math. Modelling 25 (2010), No. 5, 419-429.; Dianskii, N. A.; Galin, V. Ya.; Gusev, A. V.; Smyshlyaev, S. P.; Volodin, E. M.; Iakovlev, N. G., The model of the Earth system developed at the INM RA5, Russ. J. Numer. Anal. Math. Modelling, 25, 5, 419-429 (2010) · Zbl 1200.86006
[4] V. P. Dymnikov and D. V. Kulyamin, Structural stability of quasi-biennial oscillations of zonal wind in the equatorial stratosphere. Russ. J. Numer. Anal. Math. Modelling 25 (2010), No. 3, 235-251.; Dymnikov, V. P.; Kulyamin, D. V., Structural stability of quasi-biennial oscillations of zonal wind in the equatorial stratosphere, Russ. J. Numer. Anal. Math. Modelling, 25, 3, 235-251 (2010) · Zbl 1191.86013
[5] V. I. Fomichev, J.-P. Blanchet, and D. S. Turner, Matrix parameterization of the 15 mkm \(CO_2\) band cooling in the middle and upper atmosphere for variable \(CO_2\) concentration. J. Geophys. Res. 103 (1998), No. D10, 11505-11528.; Fomichev, V. I.; Blanchet, J.-P.; Turner, D. S., Matrix parameterization of the 15 mkm \(CO_2\) band cooling in the middle and upper atmosphere for variable \(CO_2\) concentration, J. Geophys. Res, 103, D10, 11505-11528 (1998)
[6] V. Ya. Galin, Parameterization of radiation processes in INM RAS atmospheric model. Izvestiya Atmosph. Oceanic Physics 34 (1998), No. 3, 380-389.; Ya, V., Galin, Parameterization of radiation processes in INM RAS atmospheric model, Izvestiya Atmosph. Oceanic Physics, 3, 380-389 (1998)
[7] C. O. Hines, Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1, Basic formulation. J. Atmosph. Terr. Phys. 59 (1997), No. 4, 371-386.; Hines, C. O., Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 1, Basic formulation, J. Atmosph. Terr. Phys, 59, 4, 371-386 (1997)
[8] D. V. Kulyamin and V. P. Dymnikov, A three-dimensional model of general thermospheric circulation. Russ. J. Numer. Anal. Math. Modelling 28 (2013), No. 4, 353-380.; Kulyamin, D. V.; Dymnikov, V. P., A three-dimensional model of general thermospheric circulation, Russ. J. Numer. Anal. Math. Modelling, 28, 4, 353-380 (2013) · Zbl 1275.86004
[9] D. V. Kulyamin and V. P. Dymnikov, Atmospheric general circulation model with hybrid vertical coordinate. Russ. J. Numer. Anal. Math. Modelling 29 (2014), No. 6, 355-373.; Kulyamin, D. V.; Dymnikov, V. P., Atmospheric general circulation model with hybrid vertical coordinate, Russ. J. Numer. Anal. Math. Modelling, 29, 6, 355-373 (2014) · Zbl 1302.86009
[10] D. V. Kulyamin and V. P. Dymnikov, Modelling of the lower ionosphere climate. Izvestiya Atmosph. Oceanic Physics 51 (2015), No. 3, 272-291.; Kulyamin, D. V.; Dymnikov, V. P., Modelling of the lower ionosphere climate, Izvestiya Atmosph. Oceanic Physics, 51, 3, 272-291 (2015) · Zbl 1346.86004
[11] D. V. Kulyamin and V. P. Dymnikov, Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region. Russ. J. Numer. Anal. Math. Modelling 31 (2016), No. 3, 159-171.; Kulyamin, D. V.; Dymnikov, V. P., Numerical modelling of coupled neutral atmospheric general circulation and ionosphere D region, Russ. J. Numer. Anal. Math. Modelling, 31, 3, 159-171 (2016) · Zbl 1346.86004
[12] D. V. Kulyamin, E. M. Volodin, and V. P. Dymnikov, Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part II. atmospheric general circulation models. Izvestiya Atmosph. Oceanic Physics 45 (2009), No. 1, 37-54.; Kulyamin, D. V.; Volodin, E. M.; Dymnikov, V. P., Simulation of the quasi-biennial oscillations of the zonal wind in the equatorial stratosphere: Part II. atmospheric general circulation models, Izvestiya Atmosph. Oceanic Physics, 45, 1, 37-54 (2009)
[13] A. A. Kutepov and V. I. Fomichev, Application of the second-order escape probability approximation to the solution of the NLTE vibration-rotational band radiative transfer problem. J. Atmosph. Terr. Phys. 55 (1993), 1.; Kutepov, A. A.; Fomichev, V. I., Application of the second-order escape probability approximation to the solution of the NLTE vibration-rotational band radiative transfer problem, J. Atmosph. Terr. Phys, 55, 1 (1993)
[14] M. G. Mlynczak and S. Solomon, A detailed evaluation of the heating efficiency in the middle atmosphere. J. Geophys. Res. 98 (1993), No. D6, 10517-10541.; Mlynczak, M. G.; Solomon, S., A detailed evaluation of the heating efficiency in the middle atmosphere, J. Geophys. Res, 98, D6, 10517-10541 (1993)
[15] T. N. Palmer, G. J. Shutts , and R. Swinbank, Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization. Quart. J. Roy. Meteor. Soc. 112 (1986), No. 474, 1001-1031.; Palmer, T. N.; Shutts, G. J.; Swinbank, R., Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity wave drag parameterization, Quart. J. Roy. Meteor. Soc, 112, 474, 1001-1031 (1986)
[16] N. M. Pedatella, T.-W. Fang, H. Jin, F. Sassi, H. Schmidt, J. L. Chau, T. A. Siddiqui, and L. Goncharenko, Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming. J. Geophys. Res.: Space Physics 121 (2016). No. 7, 7204-7225.; Pedatella, N. M.; Fang, T.-W.; Jin, H.; Sassi, F.; Schmidt, H.; Chau, J. L.; Siddiqui, T. A.; Goncharenko, L., Multimodel comparison of the ionosphere variability during the 2009 sudden stratosphere warming, J. Geophys. Res.: Space Physics, 7, 7204-7225 (2016)
[17] A. I. Pogoreltsev, A. A. Vlasov, K. Frohlich, and Ch. Jacobi, Planetary waves in coupling the lower and upper atmosphere. J. Atmos. Solar-Terr. Phys. 69 (2007), 2083-2101.; Pogoreltsev, A. I.; Vlasov, A. A.; Frohlich, K., Ch. Jacobi, Planetary waves in coupling the lower and upper atmosphere, J. Atmos. Solar-Terr. Phys, 69, 2083-2101 (2007)
[18] P. G. Richards, Re-evaluation of thermosphere heating by solar EUV and UV radiation. Canad. J. Phys. 90 (2012), No. 8, 759-767.; Richards, P. G., Re-evaluation of thermosphere heating by solar EUV and UV radiation, Canad. J. Phys, 90, 8, 759-767 (2012)
[19] R. W. Schunk and A. Nagy, Ionospheres: Physics, Plasma Physics, and Chemistry 5th ed. Cambridge University Press, 2009.; Schunk, R. W.; Nagy, A., Ionospheres: Physics, Plasma Physics, and Chemistry (2009)
[20] R. S. Stolarski, P. B. Hays, and R. G. Roble, Atmospheric heating by solar EUV radiation. J. Geophys. Res. 80 (1975), No. 16, 2266-2276.; Stolarski, R. S.; Hays, P. B.; Roble, R. G., Atmospheric heating by solar EUV radiation, J. Geophys. Res, 80, 16, 2266-2276 (1975)
[21] D. F. Strobel, Parameterization of the atmospheric heating rate from 15 to 120 km due to \(O_2\) and \(O_3\) absorption of solar radiation. J. Geophys. Res. 83 (1978), No. 12, 6225-6230.; Strobel, D. F., Parameterization of the atmospheric heating rate from 15 to 120 km due to \(O_2\) and \(O_3\) absorption of solar radiation, J. Geophys. Res, 83, 12, 6225-6230 (1978)
[22] E. M. Volodin, E. V. Motikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykossov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, and N. G. Iakovlev. Simulation of the present-day climate with the climate model INMCM5. Climate Dynamics 49 (2017), No. 11-12, 3715-3734.; Volodin, E. M.; Motikov, E. V.; Kostrykin, S. V.; Galin, V. Ya.; Lykossov, V. N.; Gritsun, A. S.; Diansky, N. A.; Gusev, A. V.; Iakovlev, N. G., Simulation of the present-day climate with the climate model INMCM5, Climate Dynamics, 49, 11-12, 3715-3734 (2017) · Zbl 1417.86006
[23] E. M. Volodin and V. N. Lykossov, Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izvestiya Atmosph. Oceanic Physics 34 (1998), No. 4, 405-416.; Volodin, E. M.; Lykossov, V. N., Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data, Izvestiya Atmosph. Oceanic Physics, 34, 4, 405-416 (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.