×

On approximation of the Neumann problem by the penalty method. (English) Zbl 0795.65075

Author’s summary: We prove that penalization of constraints occurring in the linear elliptic Neumann problem yields directly the exact solution for an arbitrary set of penalty parameters. In this case there is a continuum of Lagrange’s multipliers. The proposed penalty method is applied to calculate the magnetic field in the window of a transformer.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J25 Boundary value problems for second-order elliptic equations
78A25 Electromagnetic theory (general)
35Q60 PDEs in connection with optics and electromagnetic theory
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] I. Babuška: Uncertainties in engineering design: mathematical theory and numerical experience. In the Optimal Shape, (J. Bennet and M. M. Botkin, Plenum Press (1986), also in Technical Note BN-1044, Univ. of Maryland (1985), 1-35.
[2] J. Céa: Optimization, théorie et algorithmes. Dunod, Paris, 1971.
[3] P. G. Ciarlet: The finite element method for elliptic problems. North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[4] I. Doležel: Numerical calculation of the leakage field in the window of a transformer with magnetic shielding. Acta Tech. ČSAV (1981), 563-588. · Zbl 0485.76102
[5] M. Feistauer: Mathematical methods in fluid dynamics. Longman Scientific & Technical, Harlow, 1993. · Zbl 0819.76001
[6] I. Hlaváček J. Nečas: On inequalities of Korn’s type. Arch. Rational Mech. Anal. 36 (1970), 305-334. · Zbl 0193.39001
[7] M. Křížek W. G. Litvinov: On the methods of penalty functions and Lagrange’s multipliers in the abstract Neumann problem. Z. Angew. Math. Mech. (1993).
[8] M. Křížek Z. Milka: On a nonconventional variational method for solving the problem of linear elasticity with Neumann or periodic boundary conditions. Banach Center Publ. (1993).
[9] M. Křížek P. Neittaanmäki M. Vondrák: A nontraditional approach for solving the Neumann problem by the finite element method. Mat. Apl. Comput. 11 (1992), 31-40. · Zbl 0771.65070
[10] W. G. Litvinov: Optimization in elliptic boundary value problems with applications to mechanics. (in Russian), Nauka, Moscow, 1987. · Zbl 0688.49003
[11] J. Nečas I. Hlaváček: Mathematical theory of elastic and elasto-plastic bodies: an introduction. Elsevier, Amsterdam, 1981.
[12] B. N. Pšeničnyj, Ju. M. Danilin: Numerical methods in extremum problems. (Russian), Nauka, Moscow, 1975.
[13] L. Schwartz: Analyse mathématique, Vol. 1. Hermann, Paris, 1967. · Zbl 0171.01301
[14] A. E. Taylor: Introduction to functional analysis. John Wiley & Sons, New York, 1958. · Zbl 0081.10202
[15] R. Temam: Navier-Stokes equations. North-Holland, Amsterdam, 3rd revised edn, 1984. · Zbl 0568.35002
[16] D. E. Ward: Exact penalties and sufficient conditions for optimality in nonsmooth optimization. Optim. Theory Appl. 57 (1988), 485-499. · Zbl 0621.90081
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.